The stochastic gradient descent (SGD) method is useful in the phase-only hologram optimization process and can achieve a high-quality holographic display. However, for the current SGD solution in multi-depth hologram generation, the optimization time increases dramatically as the number of depth layers of object increases, leading to the SGD method nearly impractical in hologram generation of the complicated three-dimensional object. In this paper, the proposed method uses a complex loss function instead of an amplitude-only loss function in the SGD optimization process. This substitution ensures that the total loss function can be obtained through only one calculation, and the optimization time can be reduced hugely. Moreover, since both the amplitude and phase parts of the object are optimized, the proposed method can obtain a relatively accurate complex amplitude distribution. The defocus blur effect is therefore matched with the result from the complex amplitude reconstruction. Numerical simulations and optical experiments have validated the effectiveness of the proposed method.
A waveguide-based near-eye display (WNED) with an extended viewing angle using a polarization-dependent steering combiner (PDSC) is proposed. The novel eyepiece-combiner is composed of polarization gratings and polarization optics attached to the outcoupler part of the waveguide, which can control the output beam path depending on the polarization state. The viewing angle limited by the grating properties can be extended up to twice. Also, an ultrathinness of about 1.4 mm is suitable for the WNED. The demonstrated prototype system achieves a horizontal field of view of 33.2°, which is 2 times wider than the conventional structure (without the PDSC). The proposed configuration can resolve the viewing angle issue for the WNED.
We present a retinal-projection-based near-eye display with switchable multiple viewpoints by polarization-multiplexing. Active switching of viewpoints is provided by the polarization grating, multiplexed holographic optical elements and polarization-dependent eyepiece lens that can generate one of the dual-divided focus groups according to the pupil position. The lightguide-combined optical devices have a potential to enable a wide field of view (FOV) and short eye relief with compact form factor. Our proposed system can support a pupil movement with an extended eyebox and mitigate image problem caused by duplicated viewpoints. We discuss the optical design for guiding system and demonstrate that proof-of-concept system provides all-in-focus images with 37 degrees FOV and 16 mm eyebox in horizontal direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.