The ultimate 3D displays should provide both psychological and physiological cues for depth recognition. However, it has been challenging to satisfy the essential features without making sacrifices in the resolution, frame rate, and eye box. Here, we present a tomographic near-eye display that supports a wide depth of field, quasi-continuous accommodation, omni-directional motion parallax, preserved resolution, full frame, and moderate field of view within a sufficient eye box. The tomographic display consists of focus-tunable optics, a display panel, and a fast spatially adjustable backlight. The synchronization of the focus-tunable optics and the backlight enables the display panel to express the depth information. We implement a benchtop prototype near-eye display, which is the most promising application of tomographic displays. We conclude with a detailed analysis and thorough discussion of the display's optimal volumetric reconstruction. of tomographic displays.
We introduce an approach to expand the eye-box in a
retinal-projection-based near-eye display. The retinal projection
display has the advantage of providing clear images in a wide depth
range; however, it has difficulty in practical use with a narrow
eye-box. Here, we propose a method to enhance the eye-box of the
retinal projection display by generating multiple independent
viewpoints, maintaining a wide depth of field. The method prevents
images projected from multiple viewpoints from overlapping one other
in the retina. As a result, our proposed system can provide a
continuous image over a wide viewing angle without an eye tracker or
image update. We discuss the optical design for the proposed method
and verify its feasibility through simulation and experiment.
Hybrid multi-layer displays are proposed as the system combines additive light field (LF) displays and multiplicative LF displays. The system is implemented by integrating the multiplicative LF displays with a half mirror to expand the overall depth of field. The hybrid displays are advantageous in that the form factor is competitive with existing additive LF displays with 2 layers implemented by a half mirror and two panels, only half of brightness loss is experienced compared to multiplicative LF displays with 2 layers, and no time-division is required to provide images for multi-layer displays. The images for presentation planes are processed by light field factorization and optimized with the presented algorithm. Retinal images are reconstructed based on various accommodation states and display types to check the accommodation response and utilized to compare the proposed displays with existing displays. With ray tracing method, retinal images generated by the proposed displays can be obtained. To verify the feasibility of the system, a prototype of hybrid multi-layer displays was implemented and display photographs were captured with different accommodation states of camera. With the simulation results and experimental results, this system was confirmed to support accommodation cues in a range of 1.8 diopters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.