Inadequate rheological properties of gelatin methacrylamide (GelMA) were successfully improved by incorporating cellulose nanofibers (CNFs), such that the printed scaffolds could maintain their structural fidelity during the three-dimensional (3D) bio-printing process. The CNFs provided an outstanding shear thinning property, and the GelMA/CNF inks exhibited high zero shear viscosity and structural fidelity under a low dispensing pressure. After evaluating the printability, composite inks containing 2% w/v CNF were observed to have an optimal concentration of CNF to prepare 3D print stable constructs. Therefore, these inks were used to manufacture human nose and ear structures, producing highly porous structures in the printed composite hydrogels. Furthermore, the mechanical stability of the GelMA/CNF composite hydrogel was increased when CNFs were incorporated, which indicated that CNFs played an important role in enhancing the structural properties of the composite hydrogels. Additionally, the biocompatibility of CNF-reinforced hydrogels was evaluated using a fibroblast cell line.
This critical review focuses on the preparation methods of a variety of the silica nanotubes by self-assembled organogels and the recent development of silica-based organic-inorganic hybrid nanomaterials for use as chemosensors in environmental studies as well as adsorbents for inorganic guest molecules and in biological applications for delivery of organic guest molecules (127 references).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.