BackgroundMosquitoes belonging to genus Aedes are the prime vectors of several arboviral diseases such as Dengue, Zika and Chikungunya worldwide. Every year numerous cases of dengue infections occur throughout the world, proper control of which depends on efficient vector control. However the onset of insecticide resistance has resulted in failure of vector control approaches.Principal findingsThis study was carried out to unveil the degree of prevailing insecticide resistance along with its underlying mechanisms among the primary dengue vector in dengue endemic districts of West Bengal, India through standard WHO protocol. It was observed that, the majority of the tested populations were found to possess resistance to more than one insecticide. In adult bioassay, the toxicity levels of the six tested insecticides was found to decrease in the following order: deltamethrin > lambdacyhalothrin > malathion > propoxur > permethrin > DDT. In larval bioassay, one of the tested populations was found to possess moderate resistance against temephos, mortality percentage 92.5% and 79.8% for WHO (0.0200 ppm) and National Vector Borne disease Programme, India recommended dose (0.0125 ppm) respectively. Carboxylesterases were found to be involved in conferring resistance as revealed in synergistic and quantitative assay against temephos in North Dinajpur (NDP) population and malathion in Alipurduar (APD) and Darjeeling (DAR) populations. Similar correlations were also observed in the majority of the tested populations between reduced susceptibilities against pyrethroid insecticides and Cytochrome P450s activity.ConclusionEfficient disease management in this region can only be achieved through proper integrated vector management along with tools to minimize insecticide resistance. This study may help the concerned authorities in the formulation of an effective vector control strategy throughout this region incorporating the knowledge gained through this study.
Culex quinquefasciatus
is a vector of lymphatic filariasis and vector control strategies normally involve the use of synthetic insecticides targeted against them. Extensive and uncontrolled use of these synthetic insecticides has led to the development of insecticide resistance in the mosquito vectors. In this context, to study the resistance status of
Cx
.
quinquefasciatus
, field populations were collected from three districts of Northern part of West Bengal and tested against insecticides (5% malathion, 0.05% deltamethrin, 0.05% lambdacyhalothrin,0.75% permethrin, 0.1% propoxur, 4% DDT and Temephos). Qualitative and quantitative enzyme assay was also conducted in order to find the role of detoxifying enzymes behind the development of insecticide resistance. This study revealed the presence of widespread resistance amongst the field populations of
Cx
.
quinquefasciatus
throughout the studied regions. Moreover, the result of native PAGE and biochemical enzyme assay may be linked to some extent in the involvement of the detoxifying enzymes in conferring resistance against insecticides in most of the tested
Cx
.
quinquefasciatus
populations. The present study involving the survey of resistance status may be of immense help during the implementation of vector control strategies throughout this region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.