Radiation-induced complications of the respiratory system are a common side effect of thoracic radiotherapy with no viable treatment option. Here, we investigated the potential therapeutic effect of the orphan drug pirfenidone for treating radiation-induced pulmonary fibrosis. C57BL/6 mice received a single fraction of 16 Gy to the thorax and were subsequently treated with 300 mg/kg/day pirfenidone for four weeks. Survival and body weight of the mice were quantified. Micro-CT in vivo lung imaging was performed to dynamically observe the developmental process of pulmonary fibrosis. The lungs were excised at the end of the experiment and evaluated for histological changes. Compared to the irradiated mice that received no pirfenidone, mice treated with pirfenidone after irradiation had an extended median survival time (>140 days vs. 73 days, P < 0.01). The accumulation of collagen and fibrosis in lung tissues after irradiation was decreased with pirfenidone treatment. Pirfenidone also reduced the expression of TGF-β1 and phosphorylation of Smad3 in lung tissues. The dose level of Pirfenidone used in this study attenuated pulmonary fibrosis and prolonged the life span of irradiated mice. It may offer a promising approach to treat or minimize radiation-induced pulmonary fibrosis.
Radiation induced pulmonary fibrosis (RIPF) is one of the major side effects of radiotherapy for lung cancer. Previous studies have shown that endothelial cells and activated myofibroblasts play a key role in RIPF. However, the interaction between irradiated endothelial cells and activation of myofibroblasts has not been reported. The aim of the present study was to examine whether irradiated endothelial cells would affect the differentiation of fibroblasts into myofibroblasts in the process of RIPF. In the current study, we used a coculture system that allowed direct contact between human fetal lung fibroblasts (MRC-5) and irradiated human umbilical vein endothelial cells (HUVECs). After 24 or 48 h, cells were sorted by flow cytometry. Radiation induced endothelial-mesenchymal transition (EndMT) by significantly increasing the expression of Snail and vimentin and reducing the expression of CD31 in HUVECs. In addition, irradiation of HUVECs induced the expression of collagen type I and α-smooth muscle actin (α-SMA) in MRC-5 cells. Further investigation indicated that irradiation of HUVECs induced the differentiation of fibroblasts into myofibroblasts through the Snail/miR-199a-5p axis. We conclude that irradiated endothelial cells undergo EndMT to promote differentiation of fibroblasts into myofibroblasts via the Snail/miR-199a-5p axis.
Radiation-induced liver fibrosis (RILF) is a serious complication of the radiotherapy of liver cancer, which lacks effective prevention and treatment measures. Kinsenoside (KD) is a monomeric glycoside isolated from Anoectochilus roxburghii, which has been reported to show protective effect on the early progression of liver fibrosis. However, the role of KD in affecting RILF remains unknown. Here, we found that KD alleviated RILF via downregulating connective tissue growth factor (CTGF) through TGF-β1 signaling. Sprague-Dawley rats were administered with 20 mg/kg KD per day for 8 weeks after a single 30Gy irradiation on the right part of liver, and tumor-bearing nude mice were administered with 30 mg/kg KD per day after a single fraction of 10Gy on the tumor inoculation site. Twenty-four weeks postirradiation, we found that the administration of KD after irradiation resulted in decreased expression of α-SMA and fibronectin in the liver tissue while had no adverse effect on the tumor radiotherapy. Besides, KD inhibited the activation of hepatic stellate cells (HSCs) postirradiation via targeting CTGF as indicated by the transcriptome sequencing. Results of the pathway enrichment and immunohistochemistry suggested that KD reduced the expression of TGF-β1 protein after radiotherapy, and exogenous TGF-β1 induced HSCs to produce α-SMA and other fibrosis-related proteins. The content of activated TGF-β1 in the supernatant decreased after treatment with KD. In addition, KD inhibited the expression of the fibrosis-related proteins by regulating the TGF-β1/Smad/CTGF pathway, resulting in the intervention of liver fibrosis. In conclusion, this study revealed that KD alleviated RILF through the regulation of TGFβ1/Smad/CTGF pathway with no side effects on the tumor therapy. KD, in combination with blocking the TGF-β1 pathway and CTGF molecule or not, may become the innovative and effective treatment for RILF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.