Though the ischemic penumbra has been classically described on the basis of blood flow and physiologic parameters, a variety of ischemic penumbras can be described in molecular terms. Apoptosis-related genes induced after focal ischemia may contribute to cell death in the core and the selective cell death adjacent to an infarct. The HSP70 heat shock protein is induced in glia at the edges of an infarct and in neurons often at some distance from the infarct. HSP70 proteins are induced in cells in response to denatured proteins that occur as a result of temporary energy failure. Hypoxia-inducible factor (HIF) is also induced after focal ischemia in regions that can extend beyond the HSP70 induction. The region of HIF induction is proposed to represent the areas of decreased cerebral blood flow and decreased oxygen delivery. Immediate early genes are induced in cortex, hippocampus, thalamus, and other brain regions. These distant changes in gene expression occur because of ischemia-induced spreading depression or depolarization and could contribute to plastic changes in brain after stroke.
Ischemic brain and peripheral white blood cells release cytokines, chemokines and other molecules that activate the peripheral white blood cells after stroke. To assess gene expression in these peripheral white blood cells, whole blood was examined using oligonucleotide microarrays in 15 patients at 2.4 ± 0.5, 5 and 24 h after onset of ischemic stroke and compared with control blood samples. The 2.4 h blood samples were drawn before patients were treated either with tissue-type plasminogen activator (tPA) alone or with tPA plus Eptifibatide (the Combination approach to Lysis utilizing Eptifibatide And Recombinant tPA trial). Most genes induced in whole blood at 2 to 3 h were also induced at 5 and 24 h. Separate studies showed that the genes induced at 2 to 24 h after stroke were expressed mainly by polymorphonuclear leukocytes and to a lesser degree by monocytes. These genes included: matrix metalloproteinase 9; S100 calcium-binding proteins P, A12 and A9; coagulation factor V; arginase I; carbonic anhydrase IV; lymphocyte antigen 96 (cluster of differentiation (CD)96); monocarboxylic acid transporter (6); ets-2 (erythroblastosis virus E26 oncogene homolog 2); homeobox gene Hox 1.11; cytoskeleton-associated protein 4; N-formylpeptide receptor; ribonuclease-2; N-acetylneuraminate pyruvate lyase; BCL6; glycogen phosphorylase. The fold change of these genes varied from 1.6 to 6.8 and these 18 genes correctly classified 10/15 patients at 2.4 h, 13/15 patients at 5h and 15/15 patients at 24 h after stroke. These data provide insights into the inflammatory responses after stroke in humans, and should be helpful in diagnosis, understanding etiology and pathogenesis, and guiding acute treatment and development of new treatments for stroke.
The major heat shock protein, Hsp70, can protect against cell death by directly interfering with mitochondrial apoptosis pathways. However, Hsp70 also sensitizes cells to certain apoptotic stimuli like TNF. Little is known about how Hsp70 enhances apoptosis. We demonstrate here that Hsp70 promotes TNF killing by specifically binding the coiled-coil domain of IB kinase ␥ (IKK␥) to inhibit IKK activity and consequently inhibit NF-B-dependent antiapoptotic gene induction. An IKK␥ mutant, which interacts with Hsp70, competitively inhibits the Hsp70-IKK␥ interaction and relieves heat-mediated NF-B suppression. Depletion of Hsp70 expression with RNA interference rescues TNF-mediated cell death. Although TNF may or may not be sufficient to trigger apoptosis on its own, TNF-triggered apoptosis was initiated or made worse when Hsp70 expression increased to high levels to disrupt NF-B signaling. These results provide significant novel insights into the molecular mechanism for the pro-apoptotic behavior of Hsp70 in death-receptor-mediated cell death.
RNA expression profiles in rat brain were examined 24 h after ischemic stroke, intracerebral haemorrhage, kainate-induced seizures, insulin-induced hypoglycemia, and hypoxia and compared to sham- or untouched controls. Rat oligonucleotide microarrays were used to compare expression of over 8000 transcripts from three subjects in each group (n = 27). Of the somewhat less than 4000 transcripts called 'present' in normal or treated cortex, 5-10% of these were up-regulated 24 h after ischemia (415), haemorrhage (205), kainate (187), and hypoglycemia (302) with relatively few genes induced by 6 h of moderate (8% oxygen) hypoxia (15). Of the genes induced 24 h after ischemia, haemorrhage, and hypoglycemia, approximately half were unique for each condition suggesting unique components of the responses to each of the injuries. A significant component of the responses involved immune-process related genes likely to represent responses to dying neurons, glia and vessels in ischemia; to blood elements in haemorrhage; and to the selectively vulnerable neurons that die after hypoglycemia. All of the genes induced by kainate were also induced either by ischemia, haemorrhage or hypoglycemia. This strongly supports the concept that excitotoxicity not only plays an important role in ischemia, but is an important mechanism of brain injury after intracerebral haemorrhage and hypoglycemia. In contrast, there was only a single gene that was down-regulated by all of the injury conditions suggesting there is not a common gene down-regulation response to injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.