The indirect bandgap semiconductor tin selenide (SnSe) has been a research hotspot in the thermoelectric fields since a ZT (figure of merit) value of 2.6 at 923 K in SnSe single crystals along the b‐axis is reported. SnSe has also been extensively studied in the photovoltaic (PV) application for its extraordinary advantages including excellent optoelectronic properties, absence of toxicity, cheap raw materials, and relative abundance. Moreover, the thermoelectric and optoelectronic properties of SnSe can be regulated by the structural transformation and appropriate doping. Here, the studies in SnSe research, from its evolution to till now, are reviewed. The growth, characterization, and recent developments in SnSe research are discussed. The most popular growth techniques that have been used to prepare SnSe materials are discussed in detail with their recent progress. Important phenomena in the growth of SnSe as well as the problems remaining for future study are discussed. The applications of SnSe in the PV fields, Li‐ion batteries, and other emerging fields are also discussed.
In this paper, we present FlexTouch, a technique that enables large-scale interaction sensing beyond the spatial constraints of capacitive touchscreens using passive low-cost conductive materials. This is achieved by customizing 2D circuit-like patterns with an array of conductive strips that can be easily attached to the sensing nodes on the edge of the touchscreen. FlexTouch requires no hardware modification, and is compatible with various conductive materials (copper foil tape, silver nanoparticle ink, ITO frames, and carbon paint), as well as fabrication methods (cutting, coating, and ink-jet printing). Through a series of studies and illustrative examples, we demonstrate that FlexTouch can support long-range touch sensing for up to 4 meters and everyday object presence detection for up to 2 meters. Finally, we show the versatility and feasibility of FlexTouch through applications such as body posture recognition, human-object interaction as well as enhanced fitness training experiences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.