Broomcorn millet (Panicum miliaceum L.) has strong tolerance to abiotic stresses, and is probably one of the oldest crops, with its earliest cultivation that dated back to ca. ~10,000 years. We report here its genome assembly through a combination of PacBio sequencing, BioNano, and Hi-C (in vivo) mapping. The 18 super scaffolds cover ~95.6% of the estimated genome (~887.8 Mb). There are 63,671 protein-coding genes annotated in this tetraploid genome. About ~86.2% of the syntenic genes in foxtail millet have two homologous copies in broomcorn millet, indicating rare gene loss after tetraploidization in broomcorn millet. Phylogenetic analysis reveals that broomcorn millet and foxtail millet diverged around ~13.1 Million years ago (Mya), while the lineage specific tetraploidization of broomcorn millet may be happened within ~5.91 million years. The genome is not only beneficial for the genome assisted breeding of broomcorn millet, but also an important resource for other Panicum species.
Domestication of broomcorn millet (Panicum miliaceum) is one of the most significant events in prehistoric East Asia, providing sufficient food supply for the explosive growth of Neolithic populations and the transition into complex societies. However, to date, the process of broomcorn millet domestication is still largely unknown, partly due to the lack of clear diagnostic tools for distinguishing between millet and its related wild grasses in archaeological samples. Here, we examined the percentage of silicified epidermal long-cell undulated patterns in the glume and palea from inflorescence bracts in 21 modern varieties of broomcorn millet and 12 weed/feral-type Panicum ruderale collected across northern China. Our results show that the percentage of ηIII patterns in domesticated broomcorn millet (23.0% ± 5.9%; n = 63) is about 10% higher than in P. ruderale (10.8% ± 5.8%; n = 36), with quartiles of 17.2–28.3% and 5.1–15.5%, respectively. Owing to the increase in ηIII pattern percentage correlates significantly with a decrease in the grain length/width ratio, in the absence of exact wild ancestors of broomcorn millet, the characterization of phytolith differences between P. ruderale and P. miliaceum thus becomes an alternative approach to provide insight into origin of broomcorn millet.
Broomcorn millet (Panicum miliaceum L.), one of the first domesticated crops, has been grown in Northern China for at least 10,000 years. The species is presently a minor crop, and evaluation of its genetic diversity has been very limited. In this study, we analyzed the genetic diversity of 88 accessions of broomcorn millet collected from various provinces of China. Amplification with 67 simple sequence repeat (SSR) primers revealed moderate levels of diversity in the investigated accessions. A total of 179 alleles were detected, with an average of 2.7 alleles per locus. Polymorphism information content and expected heterozygosity ranged from 0.043 to 0.729 (mean = 0.376) and 0.045 to 0.771 (mean = 0.445), respectively. Cluster analysis based on the unweighted pair group method of mathematical averages separated the 88 accessions into four groups at a genetic similarity level of 0.633. A genetic structure assay indicated a close correlation between geographical regions and genetic diversity. The uncovered information will be valuable for defining gene pools and developing breeding programs for broomcorn millet. Furthermore, the millet-specific SSR markers developed in this study should serve as useful tools for assessment of genetic diversity and elucidation of population structure in broomcorn millet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.