Type 2 diabetes is characterized by a deficit in β-cell function and mass, and its incidence increases with age. Autophagy is a highly regulated intracellular process for degrading cytoplasmic components, particularly protein aggregates and damaged organelles. Impaired or deficient autophagy is believed to cause or contribute to aging and age-related disease. Autophagy may be necessary to maintain structure, mass, and function of pancreatic β-cells. In this study, we investigated the effects of age on β-cell function and autophagy in pancreatic islets of 4-month-old (young), 14-month-old (adult), and 24-month-old (old) male Wistar rats. We found that islet β-cell function decreased gradually with age. Protein expression of the autophagy markers LC3/Atg8 and Atg7 exhibited a marked decline in aged islets. The expression of Lamp-2, a good indicator of autophagic degradation rate, was significantly reduced in the islets of old rats, suggesting that autophagic degradation is decreased in the islets of aged rats. However, protein expression of beclin-1/Atg6, which plays an important role in the induction and formation of the preautophagosome structure by associating with a multimeric complex of autophagy regulatory proteins (Atg14, Vps34/class 3 PI3 kinase, and Vps15), was most prominent in the islets of adult rats, and was higher in 24-month-old islets than in 4-month-old islets. The levels of p62/SQSTM1 and polyubiquitin aggregates, representing the functions of autophagy and proteasomal degradation, were increased in aging islets. 8-Hydroxydeoxyguanosine, a marker of mitochondrial and nuclear DNA oxidative damage, exhibited strong immunostaining in old islets. Analysis by electron microscopy demonstrated swelling and disintegration of cristae in the mitochondria of aged islets. These results suggest that β-cell and autophagic function in islets decline simultaneously with increasing age in Wistar rats, and that impaired autophagy in the islets of older rats may cause accumulation of misfolded and aggregated proteins and reduce the removal of abnormal mitochondria in β-cells, leading to reduced β-cell function. Dysfunctional autophagy in islets during the aging process may be an important mechanism leading to the development of type 2 diabetes.
Total glucosides of paeony are the active constituents of Paeoniae Radix Alba. In this study, a novel strategy was proposed to find more metabolites and the differences between paeoniflorin, albiflorin and total glucosides of paeony (TGP). This strategy was characterized as follows: firstly, the animals were divided into three groups (paeoniflorin, albiflorin and TGP) to identify the source of TGP metabolites from paeoniflorin or albiflorin; secondly, a generic information-dependent acquisition scan for the low-level metabolites was triggered by the multiple mass defect filter and dynamic background subtraction; thirdly, the metabolites were identified with a combination of data-processing methods including mass defect filtering, neutral loss filtering and product ion filtering; finally, a comparative study was used in the metabolism of paeoniflorin, albiflorin and TGP. Based on the strategy, 18 metabolites of TGP, 10 metabolites of paeoniflorin and 13 metabolites of albiflorin were identified respectively. The results indicated that the hydrolysis, conjugation reaction and oxidization were the major metabolic pathways, and the metabolic sites were the glycosidic linkage, the ester bond and the benzene ring. This study is first to explore the metabolism of TGP, and these findings enhance our understanding of the metabolism and the interactions of paeoniflrin and albiflorin in TGP.
Aim The aim of this study was to determine the relationship between abnormal glucose metabolism and osteoporosis (OP) in Han Chinese men over the age of 50 years. Patients and methods A cross-sectional study of 775 male patients aged over 50 years was performed at our hospital in 2011. The patients were divided into a normal glucose metabolism group, an impaired glucose regulation (IGR) group, and a type 2 diabetes mellitus (T2DM) group. Differences in their bone mineral densities (BMDs), OP detection rates, and indices of bone metabolism were assessed. Results After adjusting for age and body mass index (BMI), there were no significant differences in lumbar spine, femoral neck, and total hip BMD values in the three groups ( P >0.05) nor in OP detection rates ( P =0.19). However, there were some significant differences in bone metabolism markers between the groups after adjusting for age, BMI, and serum creatinine (Cr): 25-hydroxyvitamin D (25(OH)D) was positively correlated with the presence of abnormal glycometabolism ( r =0.08; P <0.01), while β-carboxy-terminal cross-linking telopeptide of type I collagen (β-CTX), bone gamma-carboxyglutamic acid protein (BGP; osteocalcin [OC]), and procollagen type 1 intact N-terminal propeptide (P1NP) were negatively correlated ( r =−0.13, −0.21, −0.14, respectively; P <0.01). Logistic regression analysis of the data indicated that BGP was the only bone metabolism marker significantly influenced by abnormal glucose metabolism (OR =0.96). Conclusion There were no significant differences in BMD or OP detection rates between the three glycometabolism groups after adjusting for age and BMI. However, the bone metabolism marker, BGP, was significantly negatively correlated with abnormal glucose metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.