Non-Ionic surfactant based vesicles, also known as niosomes, have attracted much attention in pharmaceutical fields due to their excellent behavior in encapsulating both hydrophilic and hydrophobic agents. In recent years, it has been discovered that these vesicles can improve the bioavailability of drugs, and may function as a new strategy for delivering several typical of therapeutic agents, such as chemical drugs, protein drugs and gene materials with low toxicity and desired targeting efficiency. Compared with liposomes, niosomes are much more stable during the formulation process and storage. The required pharmacokinetic properties can be achieved by optimizing components or by surface modification. This novel delivery system is also easy to prepare and scale up with low production costs. In this paper, we summarize the structure, components, formulation methods, quality control of niosome and its applications in chemical drugs, protein drugs and gene delivery.
BackgroundAloperine, a natural alkaloid constituent isolated from the herb Sophora alopecuroides displays anti-inflammatory properties in vitro and in vivo. Our group previously demonstrated that aloperine significantly induced apoptosis in colon cancer SW480 and HCT116 cells. However, its specific target(s) remain to be discovered in multiple myeloma (MM) and have not been investigated.MethodsHuman myeloma cell lines (n = 8), primary myeloma cells (n = 12), drug-resistant myeloma cell lines (n = 2), and animal models were tested for their sensitivity to aloperine in terms of proliferation and apoptosis both in vitro and in vivo, respectively. We also examined the functional mechanisms underlying the apoptotic pathways triggered by aloperine.ResultsAloperine induced MM cell death in a dose- and time-dependent manner, even in the presence of the proliferative cytokines interleukin-6 and insulin-like growth factor I. Mechanistic studies revealed that aloperine not only activated caspase-8 and reduced the expression of FADD-like interleukin-1β-converting enzyme (FLICE)-like inhibitory protein long (FLIPL) and FLICE-inhibitory proteins (FLIPS) but also activated caspase-9 and decreased the expression of phosphorylated (p)-PTEN. Moreover, co-activation of the caspase-8/cellular FLICE-inhibitory protein (cFLIP)- and caspase-9/p-PTEN/p-AKT-dependent apoptotic pathways by aloperine caused irreversible inhibition of clonogenic survival. Aloperine induce more MM apoptosis with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or borterzomib. A U266 xenograft tumor model and 5T33 MM cells recapitulated the antitumor efficacy of aloperine, and the animals displayed excellent tolerance of the drug and few adverse effects.ConclusionsAloperine has multifaceted antitumor effects on MM cells. Our data support the clinical development of aloperine for MM therapy.Electronic supplementary materialThe online version of this article (doi:10.1186/s13045-015-0120-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.