Water hyacinth is a well-known invasive weed in lakes across the world and harms the aquatic environment. Since 2011, the weed has invaded Lake Tana substantially posing a challenge to the ecosystem services of the lake. The major factors which affect the growth of the weed are phosphorus, nitrogen, temperature, pH, salinity, and lake depth. Understanding and investigating the hotspot areas is vital to predict the areas for proper planning of interventions. The main objective of this study is therefore to predict the hotspot areas of the water hyacinth over the surface of the lake using the geographical information system (GIS)-based multi-criteria evaluation (MCE) technique. The main parameters used in the multi-criteria analysis were total phosphorus (>0.08 mg L−1), total nitrogen (>1.1 mg L−1), temperature (<26.2 °C), pH (<8.6), salinity (<0.011%), and depth (<6 m). These parameters were collected from 143 sampling sites on the lake in August, December (2016), and March (2017). Fuzzy overlay spatial analysis was used to overlay the different parameters to obtain the final prediction map of water hyacinth infestation areas. The results indicated that 24,969 ha (8.1%), 21,568.7 ha (7.1%), and 24,036 ha (7.9%) of the lake are susceptible to invasion by the water hyacinth in August, December, and March, respectively. At the maximum historical lake level, 30,728.4 ha will be the potential susceptible area for water hyacinth growth and expansion at the end of the rainy season in August. According to the result of this study, the north and northeastern parts of the lake are highly susceptible for invasion. Hence, water hyacinth management and control plans shall mainly focus on the north and northeastern part of Lake Tana and upstream contributing watersheds.
Water hyacinth originated from the Amazon Basin and has expanded to other parts of the world since the 1800s. In Ethiopia, the weed is affecting the socio-economic activities of the people whose livelihood is directly or indirectly dependent on Lake Tana. Still, the area covered by water hyacinth and the impact of water level fluctuation on the expansion of water hyacinth has not been known clearly. Therefore, the main objective of this study was to determine the spatiotemporal distribution of water hyacinth and relation with lake-level fluctuation. The area covered by water hyacinth was determined using monthly Sentinel-2 images, which were collected from November 2015 to December 2019. The impact of water level fluctuation on the expansion of water hyacinth was evaluated using hourly water level data converted to a monthly average to correlate with the area covered by the water hyacinth. In addition, MOD13Q1.006 data was used to evaluate the trend of the Normalized Difference Vegetation Index (NDVI) and its linkage with the weed. The maximum areas covered by water hyacinth were 278.3, 613.6, 1108.7, 2036.5, and 2504.5 ha in Feb 2015, October 2016, September 2017, December 2018, and in December 2019, respectively. Its areal coverage was declining from the northern corridors and increasing in eastern shores of the lake. The lake-level fluctuation was observed in the range of 1.5 to 3.98 m in this study. The annual mean maximum spatial values of the NDVI were in the range of 0.27 and 0.47. The area covered by water hyacinth was increasing significantly (P < 0.05) and positively correlated with the seasonal lake-level fluctuation. High water level enabled the expansion of the weed by extending its suitable habitat of shallow water to the flood plain. Based on the results of this study, lake-level fluctuations can have an adverse impact on the expansion of the weed.
The largest freshwater lake in Ethiopia, Lake Tana, has faced ecological disaster due to water hyacinth (Eichhornia crassipes) infestation. The water hyacinth is a threat not only to the ecology but also to the socioeconomic development of the region and cultural value of the lake, which is registered as a UNESCO reserve. This study aims to map the spatiotemporal dynamics of the water hyacinth using high-resolution PlanetScope satellite images and assesses the major environmental variables that relate to the weed spatial coverage dynamics for the period August 2017 to July 2018. The plausible environmental factors studied affecting the weed dynamics include lake level, water and air temperature, and turbidity. Water temperature and turbidity were estimated from the moderate resolution imaging spectroradiometer (MODIS) satellite image and the water level was estimated using Jason-1 altimetry data while the air temperature was obtained from the nearby meteorological station at Bahir Dar station. The results indicated that water hyacinth coverage was increasing at a rate of 14 ha/day from August to November of 2017. On the other hand, the coverage reduced at a rate of 6 ha/day from December 2017 to June 2018. However, the length of shoreline infestation increased significantly from 4.3 km in August 2017 to 23.4 km in April 2018. Lake level and night-time water temperatures were strongly correlated with water hyacinth spatial coverage (p < 0.05). A drop in the lake water level resulted in a considerable reduction of the infested area, which is also related to decreasing nutrient levels in the water. The water hyacinth expansion dynamics could be altered by treating the nutrient-rich runoff with best management practices along the wetland and in the lake watershed landscape.
Nutrient enrichment from increased anthropogenic activities causes algal blooms and the proliferation of water hyacinth and other aquatic weeds. It is a recent phenomenon in developing nations where the link between water quality and water hyacinth infestation is not well studied. The objective of this study is to investigate the relationship between phosphorus, nitrogen, and chlorophyll-a on the distribution of water hyacinths in Lake Tana, located in the tropical highlands of Ethiopia. In this 3,000 km2 lake, water hyacinths have expanded from almost none to 25 km2 during the last 10 years. Water samples were taken near the four large rivers and at 27 nearshore stations. Samples were analyzed for total phosphorus, total nitrogen and chlorophyll-a. Our measurements were augmented with concentrations reported in the literature historically. Our results show that phosphorus concentration increased exponentially since the first measurements in 2003 from 0.01 mg P/l to near 1.8 mg P/l in 2020. Nitrogen concentrations increased from near zero at the end of the dry phase but remained nearly constant at around 2 mg total N/l after 2016. As a result, the ratio of nitrogen and phosphorus decreased in time, and the lake went from phosphorus to nitrogen limiting. Chlorophyll-a concentrations ranged from 0.3 to 104 μg/l. Water hyacinths appeared in the lake around 2010 after the nitrogen assimilation capacity of the lake was exceeded. They are found mainly in the northeastern part of Lake Tana, while nutrient concentrations are suitable for growing water hyacinths throughout the lake after 2010. Its location is mainly a consequence of lake circulation and wind direction. Minimum Chl-a concentrations were measured at locations with water hyacinths. Preventing future expansion of water hyacinth in Lake Tana is complicated but will require at minimum management practices that reduce the nitrogen and phosphorus loading from fertilizers applied in agriculture and prevent contributions from point sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.