Data scarcity has been a huge problem in modeling the water resources of the Upper Blue Nile basin, Ethiopia. Satellite data and different statistical methods have been used to improve the quality of conventional meteorological data. This study assesses the applicability of the National Centers for Environmental Prediction's Climate Forecast System Reanalysis (CFSR) climate data in modeling the hydrology of the region. The Soil and Water Assessment Tool was set up to compare the performance of CFSR weather with that of conventional weather in simulating observed streamflow at four river gauging stations in the Lake Tana basin — the upper part of the Upper Blue Nile basin. The conventional weather simulation performed satisfactorily (e.g., NSE ≥ 0.5) for three gauging stations, while the CFSR weather simulation performed satisfactorily for two. The simulations with CFSR and conventional weather yielded minor differences in the water balance components in all but one watershed, where the CFSR weather simulation gave much higher average annual rainfall, resulting in higher water balance components. Both weather simulations gave similar annual crop yields in the four administrative zones. Overall the simulation with the conventional weather performed better than the CFSR weather. However, in data‐scarce regions such as remote parts of the Upper Blue Nile basin, CFSR weather could be a valuable option for hydrological predictions where conventional gauges are not available.
Climate change is likely to have severe effects on water availability in Ethiopia. The aim of the present study was to assess the impact of climate change on the Gilgel Abay River, Upper Blue Nile Basin. The Statistical Downscaling Tool (SDSM) was used to downscale the HadCM3 (Hadley centre Climate Model 3) Global Circulation Model (GCM) scenario data into finer scale resolution. The Soil and Water Assessment Tool (SWAT) was set up, calibrated, and validated. SDSM downscaled climate outputs were used as an input to the SWAT model. The climate projection analysis was done by dividing the period 2010-2100 into three time windows with each 30 years of data. The period 1990-2001 was taken as the baseline period against which comparison was made. Results showed that annual mean precipitation may decrease in the first 30-year period but increase in the following two 30-year periods. The decrease in mean monthly precipitation may be as much as about -30% during 2010-2040 but the increase may be more than +30% in 2070-2100. The impact of climate change may cause a decrease in mean monthly flow volume between -40% to -50% during 2010-2040 but may increase by more than the double during 2070-2100. Climate change appears to have negligible effect on low flow conditions of the river. Seasonal mean flow volume, however, may increase by more than the double and +30% to +40% for the Belg (small rainy season) and Kiremit (main rainy season) periods, respectively. Overall, it appears that climate change will result in an annual increase in flow volume for the Gilgel Abay River. The increase in flow is likely to have considerable importance for local small scale irrigation activities. Moreover, it will help harnessing a significant amount of water for ongoing dam projects in the Gilgel Abay River Basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.