SUMMARYIn many flowering plants, the transition to flowering is primarily affected by seasonal changes in day length (photoperiod). An inductive photoperiod promotes flowering via synthesis of a floral stimulus, called florigen. In Arabidopsis thaliana, the FLOWERING LOCUS T (FT) protein is an essential component of florigen, which is synthesized in leaf phloem companion cells and is transported through phloem tissue to the shoot apical meristem where floral morphogenesis is initiated. However, the molecular mechanism involved in the long-distance transport of FT protein remains elusive. In this study, we characterized the classic Arabidopsis mutant fe, which is involved in the photoperiodic induction of flowering, and showed that FE encodes a phloem-specific Myb-related protein that was previously reported as ALTERED PHLOEM DEVEL-OPMENT. Phenotypic analyses of the fe mutant showed that FT expression is reduced in leaf phloem companion cells. In addition, the transport of FT protein from leaves to the shoot apex is impaired in the fe mutant. Expression analyses further demonstrated that FE is also required for transcriptional activation of FLOWERING LOCUS T INTERACTING PROTEIN 1 (FTIP1), an essential regulator for selective trafficking of the FT protein from companion cells to sieve elements. These findings indicate that FE plays a dual role in the photoperiodic induction of flowering: as a transcriptional activator of FT on the one hand, and its transport machinery component, FTIP1, on the other hand. Thus, FE is likely to play a role in regulating FT by coordinating FT synthesis and FT transport in phloem companion cells.
FLOWERING LOCUS T (FT) is an essential component of florigen in Arabidopsis thaliana. Transcription of FT is induced in leaves, and the resulting FT protein is transported to the shoot apex, in which it initiates floral development. Previous analyses suggest that, together with the b-ZIP transcription factor FD, FT regulates the transcription of downstream targets such as APETALA1 (AP1) in floral anlagen. However, conclusive in vivo evidence that FT is transported to the shoot apex to form an FT-FD complex is lacking. Here, using an innovative in vivo imaging technique, we show that the FT-FD complex and AP1 colocalise in floral anlagen. In addition, the FT-FD complex disappears soon after the floral transition owing to a reduction in FD transcripts in the shoot apex. We further show that misinduction of FD activity after the transition leads to defective reproductive development. Taken together, our results indicate that the FT-FD complex functions as a transient stimulus and imply that a regulatory mechanism exists during the floral transition that reduces FT-FD complex levels via modulation of FD expression.
In the facultative long-day plant Arabidopsis thaliana, FLOWERING LOCUS T (FT), encoding the mobile hormone florigen, plays an essential role in modulating the optimal timing of flowering to ensure reproductive success. Under inductive long-day conditions, the transcription of FT is activated by the CONSTANS (CO)/NUCLEAR FACTOR-Y (NF-Y) protein complex in leaf phloem companion cells. FT is transported to the shoot apical meristem through interaction with florigen transporters, such as SODIUM POTASSIUM ROOT DEFECTIVE 1 (NaKR1). Some regulators involved in photoperiod-dependent FT function have been reported previously; however, the molecular mechanism that coordinates FT protein synthesis and transport efficiently needs to be investigated. The present study examined the role of an Myb-related transcription factor, FE, in the activation of FT gene transcription and FT protein transport. Expression analysis using FE-inducible systems and chromatin immunoprecipitation assays showed that FE directly bound to the FT and NaKR1 promoters and activated the transcription of downstream target genes. FE failed to activate FT expression without CO function, whereas FE-mediated NaKR1 induction was not affected by CO function. Taken together, our data indicate that FE regulates the transcription of FT and florigen transporter genes via different mechanisms.
During de novo plant organ regeneration, auxin induction mediates the formation of a pluripotent cell mass called callus, which regenerates shoots upon cytokinin induction. However, molecular mechanisms underlying transdifferentiation remain unknown. Here, we showed that the loss of HDA19, a histone deacetylase (HDAC) family gene, suppresses shoot regeneration. Treatment with an HDAC inhibitor revealed that the activity of this gene is essential for shoot regeneration. Further, we identified target genes whose expression was regulated through HDA19-mediated histone deacetylation during shoot induction and found that ENHANCER OF SHOOT REGENERATION 1 and CUP-SHAPED COTYLEDON 2 play important roles in shoot apical meristem formation. Histones at the loci of these genes were hyperacetylated and markedly upregulated in hda19. Transient ESR1 or CUC2 overexpression impaired shoot regeneration, as observed in hda19. Therefore, HDA19 mediates direct histone deacetylation of CUC2 and ESR1 loci to prevent their overexpression at the early stages of shoot regeneration.
Spatiotemporal changes in general transcription levels play a vital role in the dynamic regulation of various critical activities. Phosphorylation levels at Ser2 in heptad repeats within the C-terminal domain of RNA polymerase II, representing the elongation form, is an indicator of transcription. However, rapid transcriptional changes during tissue development and cellular phenomena are difficult to capture in living organisms. We introduced a genetically encoded system termed modification-specific intracellular antibody (mintbody) into Arabidopsis thaliana. We developed a protein processing- and 2A peptide-mediated two-component system for real-time quantitative measurement of endogenous modification level. This system enables quantitative tracking of the spatiotemporal dynamics of transcription. Using this method, we observed that the transcription level varies among tissues in the root and changes dynamically during the mitotic phase. The approach is effective for achieving live visualization of the transcription level in a single cell and facilitates an improved understanding of spatiotemporal transcription dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.