Flowering in Arabidopsis is promoted via several interacting pathways. A photoperiod-dependent pathway relays signals from photoreceptors to a transcription factor gene, CONSTANS (CO), which activates downstream meristem identity genes such as LEAFY (LFY). FT, together with LFY, promotes flowering and is positively regulated by CO. Loss of FT causes delay in flowering, whereas overexpression of FT results in precocious flowering independent of CO or photoperiod. FT acts in part downstream of CO and mediates signals for flowering in an antagonistic manner with its homologous gene, TERMINAL FLOWER1 (TFL1).
Postembryonic development of plants depends on the activity of apical meristems established during embryogenesis. The shoot apical meristem (SAM) and the root apical meristem (RAM) have similar but distinct cellular organization. Arabidopsis FASCIATA1 (FAS1) and FAS2 genes maintain the cellular and functional organization of both SAM and RAM, and FAS gene products are subunits of the Arabidopsis counterpart of chromatin assembly factor-1 (CAF-1). fas mutants are defective in maintenance of the expression states of WUSCHEL (WUS) in SAM and SCARECROW (SCR) in RAM. We suggest that CAF-1 plays a critical role in the organization of SAM and RAM during postembryonic development by facilitating stable maintenance of gene expression states.
The specification and maintenance of growth sites are tightly regulated during cell morphogenesis in all organisms. ROOT HAIR DEFECTIVE 2 reduced nicotinamide adenine dinucleotide phosphate (RHD2 NADPH) oxidase-derived reactive oxygen species (ROS) stimulate a Ca2+ influx into the cytoplasm that is required for root hair growth in Arabidopsis thaliana. We found that Ca2+, in turn, activated the RHD2 NADPH oxidase to produce ROS at the growing point in the root hair. Together, these components could establish a means of positive feedback regulation that maintains an active growth site in expanding root hair cells. Because the location and stability of growth sites predict the ultimate form of a plant cell, our findings demonstrate how a positive feedback mechanism involving RHD2, ROS, and Ca2+ can determine cell shape.
Plant respiratory burst oxidase homolog (rboh) proteins, which are homologous to the mammalian 91-kDa glycoprotein subunit of the phagocyte oxidase (gp91 phox ) or NADPH oxidase 2 (NOX2), have been implicated in the production of reactive oxygen species (ROS) both in stress responses and during development. Unlike mammalian gp91 phox /NOX2 protein, plant rboh proteins have hydrophilic N-terminal regions containing two EF-hand motifs, suggesting that their activation is dependent on Ca 2؉ . However, the significance of Ca 2؉ binding to the EF-hand motifs on ROS production has been unclear. By employing a heterologous expression system, we showed that ROS production by Arabidopsis thaliana rbohD (AtrbohD) was induced by ionomycin, which is a Ca 2؉ ionophore that induces Ca 2؉ influx into the cell. This activation required a conformational change in the EF-hand region, as a result of Ca 2؉ binding to the EF-hand motifs. We also showed that AtrbohD was directly phosphorylated in vivo, and that this was enhanced by the protein phosphatase inhibitor calyculin A (CA). Moreover, CA itself induced ROS production and dramatically enhanced the ionomycin-induced ROS production of AtrbohD. Our results suggest that Ca 2؉ binding and phosphorylation synergistically activate the ROS-producing enzyme activity of AtrbohD.Photosynthetic plants have developed various mechanisms to cope with oxidative stress, such as the production of antioxidants and enzymes that scavenge reactive oxygen species (ROS).3 Plants are also equipped with mechanisms for producing ROS in response to internal and external stimuli. ROS production is induced during many physiological processes, including stress responses, cell growth, hormonal responses, stomatal closure, and disease resistance (see Refs. 1-4 and references therein).ROS production is induced in plants in response to recognition of pathogenic signals, such as pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) or elicitors. Elicitor-induced ROS production is preceded by a rapid increase in the cytosolic free Ca 2ϩ concentration ([Ca 2ϩ ] cyt ) (5-7) and is inhibited both by Ca 2ϩ chelators such as EGTA and BAPTA, and by Ca 2ϩ channel blockers such as La 3ϩ (6,8). The overexpression of rice two-pore channel 1 (OsTPC1), which is a putative voltage-gated Ca 2ϩ channel, enhanced elicitor-induced ROS production (9). Elicitor-induced ROS production is also inhibited by diphenylene iodonium (DPI), which is known to inhibit NADPH oxidase activity (6, 10). NADPH oxidase activity in the microsomal membrane fraction from tomato and tobacco was activated by adding Ca 2ϩ in vitro (11), suggesting that elicitor-induced ROS production by plant NADPH oxidase might be dependent on Ca 2ϩ . In mammalian phagocytes, ROS production is mediated by the NADPH-dependent phagocytic oxidase (phox) complex, which consists of the catalytic subunit gp91 phox /NADPH oxidase (NOX) 2, together with the regulatory subunits p22 phox , p40 phox , p47 phox , p67 phox , and the small GTP-binding protein Rac (12). In...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.