The initiation of flowering in plants is controlled by environmental and endogenous signals 1,2 . Molecular analysis of this process in Arabidopsis thaliana indicates that environmental control is exerted through the photoperiod and vernalization pathways, whereas endogenous signals regulate the autonomous and gibberellin pathways. The vernalization and autonomous pathways converge on the negative regulation of FLC 3,4 , a gene encoding a MADS-box protein that inhibits flowering 3,4 . We cloned FVE, a component of the autonomous pathway that encodes AtMSI4, a putative retinoblastomaassociated protein. FVE interacted with retinoblastoma protein in immunoprecipitation assays, and FLC chromatin was enriched in acetylated histones in fve mutants. We conclude that FVE participates in a protein complex repressing FLC transcription through a histone deacetylation mechanism. Our data provide genetic evidence of a new developmental function of these conserved proteins and identify a new genetic mechanism in the regulation of flowering. shown in the upper part, capital letters correspond to the wild-type or mutated nucleotides. In the protein schematic, gray boxes represent WD repeats, the narrow black box represents a putative nuclear localization signal and the asterisk indicates a putative retinoblastoma-binding motif.