The vast utilizing of aniline in diverse industrial applications makes it predominantly recognized in the eco-geological system. This work investigated the feasibility of reverse osmosis (RO) and nanofiltration (NF) membranes for the removing of aniline from wastewater. The performance of the TFC spiral wound membrane was examined with different operating parameters. The effect of feed concentration (10-200 mg/l) and operating pressure (1-4 bar) on flux and aniline rejection were explored. Additionally, the fouling test for the adopted membranes was conducted for 20 h using NaOH as cleaning agent. The results revealed that a high rejection ratio at noticeable low operation pressure was achieved by using TFC membranes for both of the RO and NF technologies. The maximum aniline rejection was 99.8% and 93.25% under a 1 bar pressure and the concentration of feed 10 mg/l for the RO and NF membranes, respectively. These rejection ratios correspond to the permissible concentration of aniline in the wastewater. The water flux obtained was 6.33 and 13.5 LMH for reverse osmosis and nanofiltration membranes, respectively. The augmentation of operation pressure resulted in decreasing of rejection and rising of the flux. The fouling test showed a reduction in flux of about 0.92 and 4.35% for RO and NF membranes, respectively, from its initial value before membrane cleaning. The results also demonstrated that the reverse osmosis membrane is better than the nanofiltration membrane in terms of removal efficiency.
This study investigated the application of the crystallization process for oilfield produced water from the East Baghdad oilfield affiliated to the Midland Oil Company (Iraq). Zero liquid discharge system (ZLD) consists of several parts such as oil skimming, coagulation/flocculation, forward osmosis, and crystallization, the crystallization process is a final part of a zero liquid discharge system. The laboratory-scale simple evaporation system was used to evaluate the performance of the crystallization process. In this work, sodium chloride solution and East Baghdad oilfield produced water were used as a feed solution with a concentration of 177 and 220 g/l. The impact of temperature (70, 80, and 90 °C), mixing speed (300, 400, and 500 rpm), feed concentration (177 and 220 g/l), and time (0.5-9.5 h) on the crystallization performance for oilfield produced water treatment were investigated on evaporation rate and recovery. The recovery increased with increasing temperature and mixing speed while decreasing with an increase in feed concentration. Pure water and salts were recovered from the concentrated produced water, the recovery of pure water at 80 °C, 400 rpm, and 220 g/l feed concentration was 82.22 and 81.35% after 5.5 h for NaCl solution (i.e., simulated oilfield produced water) and oilfield produced water, respectively.
In this study, aromatic polyamide reverse osmosis membranes were used to remove zinc ions from electroplating wastewater. Influence of different operating conditions such as time, zinc concentration and pressure on reverse osmosis process efficiency was studied. The experimental results showed, concentration of zinc in permeate increase with increases of time from 0 to 70 min, and flux of water through membrane decline with time. While, the concentrations of zinc in permeate increase with the increase in feed zinc concentration (10–300 mg/l), flux decrease with the increment of feed concentration. The raise of pressure from 1 to 4 bar, the zinc concentration decreases and the flux increase. The highest recovery percentage was found is 54.56% for reverse osmosis element, and the highest rejection of zinc was found is 99.49%. Experimental results showed that the concentrations of zinc ion in permeate was lower than the permissible limits (i.e. ˂ 10 ppm). A mathematical model describing the process was investigated and solved by using MATLAB PROGRAM. Theoretical results were consistent with the experimental results approximately 90%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.