Proportionality of phenotypic and genetic distance is of crucial importance to adequately focus on population history and structure, and it depends on the proportionality of genetic and phenotypic covariance. Constancy of phenotypic covariances is unlikely without constancy of genetic covariation if the latter is a substantial component of the former. If phenotypic patterns are found to be relatively stable, the most probable explanation is that genetic covariance matrices are also stable. Factors like morphological integration account for such stability. Morphological integration can be studied by analyzing the relationships among morphological traits. We present here a comparison of phenotypic correlation and covariance structure among worldwide human populations. Correlation and covariance matrices between 47 cranial traits were obtained for 28 populations, and compared with design matrices representing functional and developmental constraints. Among-population differences in patterns of correlation and covariation were tested for association with matrices of genetic distances (obtained after an examination of 10 Alu-insertions) and with Mahalanobis distances (computed after craniometrical traits). All matrix correlations were estimated by means of Mantel tests. Results indicate that correlation and covariance structure in our species is stable, and that among-group correlation/covariance similarity is not related to genetic or phenotypic distance. Conversely, genetic and morphological distance matrices were highly correlated. Correlation and covariation patterns were largely associated with functional and developmental factors, which probably account for the stability of covariance patterns.
Quantitative craniometrical traits have been successfully incorporated into population genetic methods to provide insight into human population structure. However, little is known about the degree of genetic and non-genetic influences on the phenotypic expression of functionally based traits. Many studies have assessed the heritability of craniofacial traits, but complex patterns of correlation among traits have been disregarded. This is a pitfall as the human skull is strongly integrated. Here we reconsider the evolutionary potential of craniometric traits by assessing their heritability values as well as their patterns of genetic and phenotypic correlation using a large pedigree-structured skull series from Hallstatt (Austria). The sample includes 355 complete adult skulls that have been analysed using 3D geometric morphometric techniques. Heritability estimates for 58 cranial linear distances were computed using maximum likelihood methods. These distances were assigned to the main functional and developmental regions of the skull. Results showed that the human skull has substantial amounts of genetic variation, and a t -test showed that there are no statistically significant differences among the heritabilities of facial, neurocranial and basal dimensions. However, skull evolvability is limited by complex patterns of genetic correlation. Phenotypic and genetic patterns of correlation are consistent but do not support traditional hypotheses of integration of the human shape, showing that the classification between brachy-and dolicephalic skulls is not grounded on the genetic level. Here we support previous findings in the mouse cranium and provide empirical evidence that covariation between the maximum widths of the main developmental regions of the skull is the dominant factor of integration in the human skull.
Masticatory loading is one of the main environmental stimuli that generate craniofacial variation among recent humans. Experimental studies on a wide variety of mammals, including those with retrognathic postcanine teeth, predict that responses to masticatory loading will be greater in the occlusal plane, the inferior rostrum, and regions associated with the attachments of the temporalis and masseter muscles. Here we test these experimentally-derived predictions on an extinct human population from the middle and upper Ohio valley that underwent a marked shift from hunting-gathering to extensive farming during the last 3,000 years and for which we have good archaeological evidence about diet and food processing technology. Geometric morphometric methods were used to detect and measure the putative effect of diet changes on cranial shape independent of size. Our results partially confirm only some of the experimental predictions. The effect of softer and/or less tough diets on craniofacial shape seem to be concentrated in the relative reduction of the temporal fossa and in a displacement of the attachment of the temporal muscle. However, there were few differences in craniofacial shape in regions closer to the occlusal plane. These results highlight the utility of exploring specific localized morphological shifts using a hierarchical model of craniofacial integration.
Environmental factors are assumed to play an important role in the shaping of craniofacial morphology. Here we propose a statistical approach which can be of utility in estimating the magnitude and localization of a particular nongenetic factor upon the specific functional components of the skull. Our analysis is a combination of previous attempts of apportionment of variance and the application of craniofunctional theory. The effect of subsistence strategy on craniofacial functional components was studied on 18 populations of hunter-gatherers and farmers from South America. Results demonstrate that the environmental factors studied likely influenced the masticatory component's size and shape. Even when this effect is not large enough to clearly differentiate among subsistence strategies (since whole craniofacial variation among populations remains greater), the method used here provides interesting clues to localize plastic or adaptive responses to external stimuli.
A current issue on the settlement of the Americas refers to the lack of morphological affinities between early Holocene human remains (Palaeoamericans) and modern Amerindian groups, as well as the degree of contribution of the former to the gene pool of the latter. A different origin for Palaeoamericans and Amerindians is invoked to explain such a phenomenon. Under this hypothesis, the origin of Palaeoamericans must be traced back to a common ancestor for Palaeoamericans and Australians, which departed from somewhere in southern Asia and arrived in the Australian continent and the Americas around 40,000 and 12,000 years before present, respectively. Most modern Amerindians are believed to be part of a second, morphologically differentiated migration. Here we present evidence of a modern Amerindian group from the Baja California Peninsula in Mexico, showing clearer affinities with Palaeoamerican remains than with modern Amerindians. Climatic changes during the Middle Holocene probably generated the conditions for isolation from the continent, restricting the gene flow of the original group with northern populations, which resulted in the temporal continuity of the Palaeoamerican morphological pattern to the present.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.