Summary Roof joint connects the upper roof structure to the lower RC columns in large‐span structures. However, during several earthquakes, concrete edge failure of roof joint observed in several previous earthquakes shows potential collapse damage of the large‐span structures. This paper presents an experimental and numerical study on the performance of roof joints under quasi‐static cyclic loading. The effects of concrete edge distance of anchor rods and using horizontally slotted holes in the base plate were investigated and discussed by means of ultimate shear resistances, failure modes, hysteretic responses, anchor strains, and stirrup strains. It was found that concrete edge failure was prone to occur if the edge distance was taken as per current design practice. However, with the use of slotted holes in the base plate, the concrete edge failure could be suppressed due to the sliding between the base plate and the mortar layer. A refined theoretical model was proposed to evaluate the ultimate shear resistance and predict the failure mode. Finite Element Models (FEMs) were also developed to verify the proposed theoretical model in terms of the ultimate shear resistance and the failure mode under both monotonic and cyclic loading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.