In this work, a self-reporting hydrogel for the rapid in situ detection of bacterial enzymes is reported. To implement the reporting function for the bacterium Escherichia coli into a film-based sensing format, chitosan hydrogel films on solid backing supports were equipped with a reporting function for the enzyme β-glucuronidase (β-GUS), which is secreted by >98% of all known E. coli strains. Covalent coupling of the fluorogenic substrate 4-methylumbelliferyl-β-D-glucuronide or the complementary chromogenic substrate 4-nitrophenyl-β-D-glucuronide via amide bond formation afforded an attachment that is stable for >24 h under physiological conditions. By contrast, in the presence of β-GUS, the reporter dyes were very rapidly cleaved and produced a signal for the presence of the enzyme, which was detectable by bare eye under appropriate illumination. Detailed investigations of the enzymatic reaction for both types of substrates in neat enzyme solution as well as in bacterial supernatant revealed the apparent reaction kinetics and allowed us to determine the concentration of β-GUS in the supernatant. Under optimized conditions, the 4-methylumbelliferyl-β-D-glucuronide-functionalized hydrogel reported the presence of β-GUS within 15 min with a limit of detection of <1 nM. Finally, the function of the generally applicable hydrogel-film-based sensing approach, which is compatible with polymer-film-based applications, including wound dressings and packaging materials, and is also amenable to address noncultivatable pathogenic bacteria by using appropriate fluorogenic or chromogenic substrates, was demonstrated by direct application with bacterial medium.
The development of a versatile approach for the rapid and sensitive detection of relevant pathogenic bacteria and autonomous signaling of the detection events in reporter hydrogel film coatings is reported. Exploiting chitosan hydrogel films equipped with chromogenic or fluorogenic reporter moieties, the presence of the Gram-negative bacterium Pseudomonas aeruginosa and the Gram-positive bacterium Staphylococcus aureus is sensed within 1 h by detecting the characteristic enzymes α-glucosidase and elastase with limits of detection (LOD) <45 × 10(-9) M and <20 × 10(-9) M, respectively, for this observation time. The values for the LOD are two to three orders of magnitude smaller than the concentrations of the enzymes detected in the corresponding bacterial supernatants. The results show that the covalently conjugated reporter moieties are exclusively and efficiently reacted by the associated enzyme, allowing in principle for discrimination among different types of bacteria. Since high enzyme concentrations are a result of proliferating bacteria, e.g., in wounds or food, and since the selectivity of the reporting function is easily adapted to bacteria of choice, these reporter hydrogels comprise an interesting platform for the rapid detection of bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.