<p>Built-up cold-formed steel elements are efficient structural elements, very attractive due to material savings, but also for ease of construction. The connection between the built-up beam components can be easily obtained by screws, but the developments in the welding process also led to other solutions like spot welding. The WELLFORMED research project, conducted within the CEMSIG Research Center of the Politehnica University of Timisoara, proposes to study a new technological solution for built-up beams made of corrugated steel sheets for the web and thin-walled cold-formed steel profiles for the flanges, connected by spot welding. Within the research project, the experimental work included tensile-shear tests on the lap joint welded specimens, where different combinations of steel sheets with various thicknesses were tested and, tests on two full-scale beams in bending. The paper briefly summarizes the results of the experimental program and extends the research by numerical analyses to demonstrate the potential of this solution for standardization and industrial manufacturing. Based on the validation of the numerical model, the paper presents the influence of several parameters i.e.: (1) the initial imperfections, (2) the number and distance between spot welding on flanges, (3) the thickness of the flanges, (4) the thickness of the corrugated web and (5) the thickness of the shear panel. From the parametric study, it results that the bearing capacity of the corrugated web beams made of cold-formed steel components is highly affected by the stability of the components and less affected by the configuration and the number of spot welding.</p>
Within the WELLFORMED research project, ongoing at the CEMSIG Research Center of the Politehnica University of Timisoara, a new technological solution was proposed for built-up beams made of corrugated steel sheets for the web and thin-walled cold-formed steel profiles for the flanges, connected by spot welding. The research project integrates an extensive experimental program on such beams, using full scale specimens, to demonstrate the feasibility of the proposed solutions and to assess their performance, followed by numerical simulations to characterize and optimize the connecting details. The present paper presents the results of a large experimental program, on small specimens subjected to shear, consisting of two or three layers of steel sheet connected by spot welding.
Corrugated web girders emerged in the past two decades. Their main advantages consists in the possibility to use slender webs avoiding the risk of premature local buckling. Consequently, higher moment capacity might be obtained increasing the beam depth with really thin webs, which are stiffened by the corrugations. Increased interest for this solution was observed for the main frames of single-storey steel buildings and steel bridges. A new solution was proposed at the Politehnica University of Timisoara, in which the beam is composed by a web of trapezoidal steel sheet and flanges of back-to-back lipped channel steel sections. This solution uses self-drilling screws for connecting flanges to the web and to ensure the continuity of the web as seam fasteners. Starting from this new technological solution the paper extends and investigates the use of spot welding as seam fastening to build the web, in order to increase the degree of automation of fabrication. Experimental work of specimens in shear having two or three layers of steel sheets connected by spot welding will be presented. The results will be implemented on a numerical model in order to study the behaviour of the beams presented above.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.