Semi-natural grasslands are particularly important in mountainous areas of Romania, being the only source of forage for many farmers. The aim of this study was to investigate the changes in forage quantity and quality as a result of Urea Ammonium nitrate (UAN) liquid fertilization. The experiment was carried out in the eastern part of Apuseni Mountains, Romania on a Festuca rubra L.-Agrostis capillaris L. grassland located at 1240 m altitude. Studies were made over three years of experimental trial (2014–2016) and covered four experimental plots in three replicates, as follows: V1–control plot, unfertilized; V2–plot fertilized with 50 kg UAN ha−1 year−1; V3–plot fertilized with 75 kg UAN ha−1 year−1, and V4–plot fertilized with 100 kg UAN ha−1 year−1. The experimental plots were harvested once per year and the botanical composition, dry matter yield and forage quality were assessed. Our results showed important changes in forage quantity, quality and diversity as a result of UAN fertilization. Starting from the second experimental year the dominance/co-dominance ratio changed favoring the species from Poaceae family. Dry matter increased as a result of UAN fertilization but forage quality was negatively affected by the higher percentage of participation of species from other botanical families which have higher crude fiber content and lower crude protein. Based on our results we recommend moderate fertilization with UAN up to 50 kg UAN ha−1 year−1 for semi-natural grasslands located in soil-climatic conditions similar to those in our experiment.
Climate change is one of the greatest challenges mankind has ever faced and could lead to potentially devastating global problems, with a need for urgent mitigation and adaptation. Agriculture, especially livestock farming, is a major driver of climate change through its contribution to the total emissions of greenhouse gases (GHGs). The dairy sector has been identified as an important source of GHG emissions, mainly via carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). In this study, total CO2 equivalent (CO2e) emissions were assessed from a dairy farm (65 dairy cows) located in Romania using the Cool Farm Tool calculator (CFT). We specifically aimed to calculate: (1) the total CO2 equivalent (CO2e) and CO2e per kg FPCM (fat- and protein-corrected milk); (2) methane emissions from enteric fermentation; (3) GHGs resulting from feeding practices; (4) GHGs from manure management; and (5) a simulation of two different scenarios and their impact on GHG emissions. Our results showed annual GHG emissions of 553,170 kg CO2e, almost half of which were released through enteric fermentation. Lactating cows were the major contributor to total GHG emissions, while heifers released the lowest emissions. The two scenarios simulated in this study showed that both the changes made in dairy diet composition and livestock manure management could result in lower GHG emissions. These results confirm the importance and utility of the CFT for the quantification of GHG emissions in dairy farms and its important role as a decision support tool to guide the adoption of good agricultural practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.