Although essential for achieving high crop yields required for the growing population worldwide, nitrogen, (N) in large amounts, along with its inefficient use, results in environmental pollution and increased greenhouse gas (GHG) emissions. Therefore, improved nitrogen use efficiency (NUE) has a significant role to play in the development of more sustainable crop production systems. Considering that wheat is one of the major crops cultivated in the world and contributes in high amounts to the large N footprint, designing sustainable wheat crop patterns, briefly defined by us in this review as the 3 Qs (high quantity, good quality and the quintessence of natural environment health) is urgently required. There are numerous indices used to benchmark N management for a specific crop, including wheat, but the misunderstanding of their specific functions could result in an under/overestimation of crop NUE. Thus, a better understanding of N dynamics in relation to wheat N cycling can enhance a higher efficiency of N use. In this sense, the aim of our review is to provide a critical analysis on the current knowledge with respect to wheat NUE. Further, considering the key traits involved in N uptake, assimilation, distribution and utilization efficiency, as well as genetics (G), environment (E) and management (M) interactions, we suggest a series of future perspectives that can enhance a better efficiency of N in wheat.
The harmonization of methodologies for the assessment of radicular endophytic colonization is a current necessity, especially for the arbuscular mycorrhizas. The functionality of mycorrhizal symbionts for plants can be described only by indicators obtained based on microscopic analysis. That is the reason for which a unifying methodology will lead to the achievement of highly correlated indicators comparable from one research to another. Our proposed methodology can further digitize the microscopic observations of colonization. The MycoPatt system is developed as a methodological framework for obtaining objective and comparable microscopic observations. The horizontal, vertical and transversal indicators are highly adaptable and allow the tracking of mycorrhizal colonization in root length. All structures developed by symbionts can be traced and the obtained metadata can be compared without any transformation. Mycorrhizal maps have a high degree of applicability in evaluating soil inoculum efficiency. In the future, the application of this method will lead to digital maps with a high degree of accuracy. MycoPatt allows the mathematical expression of colonization patterns, being a complex model that converts biological data into statistically comparable indicators. This will further allow obtaining inferences with applicative importance and similarity spectra for the colonizing fungi and host plants.
Arbuscular mycorrhizal fungi (AMF) are beneficial for plant development and help absorb water and minerals from the soil. The symbiosis between these fungi and plant roots is extremely important and could limit crop dependence on fertilizers. The aim of this study was to evaluate the influence of AMF on tomatoes (Solanum lycopersicum L.), based on important agronomic traits of vegetative biomass, production, and fruits. The experiment was conducted in high tunnels, using 12 tomato genotypes under three different treatments: T1, control, without fertilizer and mycorrhizae colonization; T2, fertigation, without mycorrhizae colonization; and T3, arbuscular mycorrhizal fungi (AMF), seedling roots being inoculated with specialized soil-borne fungi. Plant growth, yield and fruit parameters indicated better results under mycorrhizal treatment. Root colonization with fungi varied significantly depending on the treatment and genotype, with a variation of 6.0–80.3% for frequency and 2.6–24.6% for intensity. For a majority of characteristics, the mycorrhization (T3) induced significant differences compared with the T1 and T2 treatments. In addition, AMF treatment induced a different response among the genotypes. Among the elements analyzed in the soil, significant differences were observed in phosphorous levels between planting the seedlings and after tomato harvesting and clearing of the plants. The results suggest that reducing fertilizers and promoting the symbiotic relationships of plants with soil microorganisms may have beneficial consequences for tomato crops.
Grassland ecosystems occupy significant areas worldwide and represent a reservoir for biodiversity. These areas are characterized by oligotrophic conditions that stimulate mycorrhizal symbiotic partnerships to meet nutritional requirements. In this study, we selected Festuca rubra for its dominance in the studied mountain grassland, based on the fact that grasses more easily accept a symbiotic partner. Quantification of the entire symbiosis process, both the degree of colonization and the presence of a fungal structure, was performed using the root mycorrhizal pattern method. Analysis of data normality indicated colonization frequency as the best parameter for assessing the entire mycorrhizal mechanism, with five equal levels, each of 20%. Most of the root samples showed an intensity of colonization between 0 and 20% and a maximum of arbuscules of about 5%. The colonization degree had an average value of 35%, which indicated a medium permissiveness of roots for mycorrhizal partners. Based on frequency regression models, the intensity of colonization presented high fluctuations at 50% frequency, while the arbuscule development potential was set to a maximum of 5% in mycorrhized areas. Arbuscules were limited due to the unbalanced and unequal root development and their colonizing hyphal networks. The general regression model indicated that only 20% of intra-radicular hyphae have the potential to form arbuscules. The colonization patterns of dominant species in mountain grasslands represent a necessary step for improved understanding of the symbiont strategies that sustain the stability and persistence of these species.
During the process of maize seed production, in order to ensure the genetic purity of parental forms of hybrid maize, an important work performed is the removal of male inflorescences from plants on mother rows. Hand detasseling has high precision but is labor-intensive. Mechanical detasseling offers the possibility to cover large acreages in a short period of time, but the number of leaves removed has a varying influence on plant performance and seed yield. The aim of this study was to simulate three types of damages on plants similar to those induced through mechanical detasseling and to assess the effects for five inbred lines during the course of three years. Results show that when tassels alone were removed, the average seed yield decreased an average of 4–21%. When two leaves were removed with the tassel, yield decreased an average of 22–31%, while when plants were cut above the main ear, seed yield decreased an average of 31–66%. Environmental conditions influenced seed yield, especially high temperatures during flowering. Yield response to tassel and leaves removal varied between the inbred lines. Genotype controls maize ear and kernel characters, while environmental factors exercise a strong influence on seed yield, due to the succession of years with contrasting weather conditions in a key phenophase. Within the trend of full mechanization in agriculture, identification of inbred lines that cope better with plant damage can assist in optimizing seed production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.