Dengue is the most prevalent arboviral disease in humans in tropical and subtropical regions, especially in urban areas, and can cause major epidemics. Although a self-limiting illness, it may sometimes have serious hemorrhagic manifestations, and the outcome of dengue hemorrhagic fever has similar clinical manifestations as in other infections, which could result in death. Therefore, autopsy procedures are required under certain circumstances such as in hemorrhagic fevers, sometimes to confirm or to clarify the diagnosis that may have epidemiological consequences. Normally, the Immunohistochemistry Laboratory of the Pathology Center of Adolfo Lutz Institute receives autopsy samples from different hospitals in Sao Paulo State to confirm a previous diagnosis, especially hemorrhagic fever of infectious etiology. For this diagnosis, we have been using a mouse polyclonal antibody to dengue virus that often does not provide a clear conclusion, because of background staining or no relevant immunostaining, which hampers the histopathological analysis. Accordingly, in the present study, anti-DENV-NS1 monoclonal antibody (4H2) was tested to determine its accuracy in immunohistochemical analysis. Twentyfour autopsy cases of hemorrhagic febrile syndrome showing histopathological alterations compatible with dengue disease were studied: twenty cases were confirmed by RT-PCR for DENV-2 and in four by RT-PCR for yellow fever virus. Samples from autopsied cases of deaths caused by other infectious diseases (two meningitis C and two severe acute respiratory syndrome caused by influenza A H1N1) were included as negative control cases. Positive immunostaining for DENV-NS1 was detected in 16/20 (80%) liver samples and 11/15 (73%) spleen samples from autopsied hemorrhagic dengue patients, whereas the polyclonal antibody detected DENV antigens in 12/20 (60%) liver and in 6/15 (40%) spleen samples from the same cases. Positive results were not obtained with liver biopsy samples from yellow fever or Neisseria meningitides and Flu-A cases. 4H2 mAb recognizes the native protein of the four DENV serotypes in infected cells and did not cross-react with native ZIKV-or CHKV-infected cells by immunohistochemical assay, so it is a useful tool for differential histopathological conclusion of acute febrile hemorrhagic deaths.
Background
The intestinal microbiota plays a crucial role in human health, adjusting its composition and the microbial metabolites protects the gut against invading microorganisms. Enteroaggregative E. coli (EAEC) is an important diarrheagenic pathogen, which may cause acute or persistent diarrhea (≥14 days). The outbreak strain has the potent Shiga toxin, forms a dense biofilm and communicate via QseBC two-component system regulating the expression of many important virulence factors.
Results
Herein, we investigated the QseC histidine sensor kinase role in the microbiota shift during O104:H4 C227–11 infection in the colonic model SHIME® (Simulator of the Human Intestinal Microbial Ecosystem) and in vivo mice model. The microbiota imbalance caused by C227–11 infection affected ỿ-Proteobacteria and Lactobacillus spp. predominance, with direct alteration in intestinal metabolites driven by microbiota change, such as Short-chain fatty acids (SCFA). However, in the absence of QseC sensor kinase, the microbiota recovery was delayed on day 3 p.i., with change in the intestinal production of SCFA, like an increase in acetate production. The higher predominance of Lactobacillus spp. in the microbiota and significant augmented qseC gene expression levels were also observed during C227–11 mice infection upon intestinal depletion. Novel insights during pathogenic bacteria infection with the intestinal microbiota were observed. The QseC kinase sensor seems to have a role in the microbiota shift during the infectious process by Shiga toxin-producing EAEC C227–11.
Conclusions
The QseC role in C227–11 infection helps to unravel the intestine microbiota modulation and its metabolites during SHIME® and in vivo models, besides they contribute to elucidate bacterial intestinal pathogenesis and the microbiota relationships.
The detection of KPC-type carbapenemases is necessary for guiding appropriate antibiotic therapy and the implementation of antimicrobial stewardship and infection control measures. Currently, few tests are capable of differentiating carbapenemase types, restricting the lab reports to their presence or not. The aim of this work was to raise antibodies and develop an ELISA test to detect KPC-2 and its D179 mutants. The ELISA-KPC test was designed using rabbit and mouse polyclonal antibodies. Four different protocols were tested to select the bacterial inoculum with the highest sensitivity and specificity rates. The standardisation procedure was performed using 109 previously characterised clinical isolates, showing 100% of sensitivity and 89% of specificity. The ELISA-KPC detected all isolates producing carbapenemases, including KPC variants displaying the ESBL phenotype such as KPC-33 and -66.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.