Lower urinary tract infections are among the most common human bacterial infections, but extension to the kidneys is rare. This has been attributed to mechanical forces, such as urine flow, that prevent the ascent of bladder microbes. Here, we show that the regional hypersalinity, required for the kidney's urine-concentrating function, instructs epithelial cells to produce chemokines that localize monocyte-derived mononuclear phagocytes (MNPs) to the medulla. This hypersaline environment also increases the intrinsic bactericidal and neutrophil chemotactic activities of MNPs to generate a zone of defense. Because MNP positioning and function are dynamically regulated by the renal salt gradient, we find that patients with urinary concentrating defects are susceptible to kidney infection. Our work reveals a critical accessory role for the homeostatic function of a vital organ in optimizing tissue defense.
BackgroundGitelman syndrome (GS) is a rare inherited disorder caused by mutations in SLC12A3, encoding the thiazide-sensitive transporter NCCT (sodium chloride co-transporter) in the distal tubule. It is characterized by renal potassium (K) and magnesium (Mg) wasting, relative hypotension and hypocalciuria. However, there is phenotypic variability and long-term studies are scarce.MethodsWe retrospectively assessed clinical and genetic characteristics, and electrolyte requirements, in a cohort of 36 patients with genetically proven GS.ResultsThe 21 males and 15 females were of median age 39.5 years, range 17–66 years. Six were diagnosed in childhood. Among the 72 mutant alleles, 41 different sequence alterations were identified, of which 13 were previously unreported. Surprisingly, 44% (n = 16) of the cohort has developed hypertension (13 males, 3 females, P = 0.019; median age 53 versus 57 years, P = 0.95). One was already hypertensive by age 23 years. Currently normotensive patients were significantly younger: median 37 versus 55 years (P = 0.005). Hypertensive patients were more likely to harbour mutations in the C-terminal half of the NCCT protein (P = 0.016). Females required more K (median 128 versus 72 mmol/day; P = 0.01) but not Mg. Those with exon 26 and/or at least one destructive mutation had higher K requirements than those with neither: 108 versus 72 mmol (P = 0.016) and a tendency towards higher Mg needs: 30 versus 7.4 mmol (P = 0.07).ConclusionsOur findings suggest that the development of secondary hypertension may be an expected feature of the ageing GS population despite the obligate salt wasting that characterizes the disorder. We hypothesize that this may be related to chronic secondary hyperaldosteronism. The apparently more severe phenotype in women may be related to the effects of female sex hormones on expression or function of NCCT.
In the United Kingdom, donation after circulatory death (DCD) kidney transplant activity has increased rapidly, but marked regional variation persists. We report how increased DCD kidney transplant activity influenced waitlisted outcomes for a single center. Between 2002-2003 and 2011-2012, 430 (54%) DCD and 361 (46%) donation after brain death (DBD) kidney-only transplants were performed at the Cambridge Transplant Centre, with a higher proportion of DCD donors fulfilling expanded criteria status (41% DCD vs. 32% DBD; p = 0.01). Compared with U.K. outcomes, for which the proportion of DCD:DBD kidney transplants performed is lower (25%; p < 0.0001), listed patients at our center waited less time for transplantation (645 vs. 1045 days; p < 0.0001), and our center had higher transplantation rates and lower numbers of waiting list deaths. This was most apparent for older patients (aged >65 years; waiting time 730 vs. 1357 days nationally; p < 0.001), who received predominantly DCD kidneys from older donors (mean donor age 64 years), whereas younger recipients received equal proportions of living donor, DBD and DCD kidney transplants. Death-censored kidney graft survival was nevertheless comparable for younger and older recipients, although transplantation conferred a survival benefit from listing for only younger recipients. Local expansion in DCD kidney transplant activity improves survival outcomes for younger patients and addresses inequity of access to transplantation for older recipients.
Acute renal failure, now referred to as acute kidney injury, is a common and clinically important problem. Acute kidney injury frequently occurs as a result of acute tubular necrosis (ATN), which is often caused by a reduction in systemic blood pressure or renal blood flow (e.g., as observed in severe sepsis or during renal transplantation). The disease course in ATN is variable, including prolonged dialysis-dependence and chronic renal dysfunction, but there is currently no specific therapy for ATN. There is increasing evidence that the inflammatory response in ATN significantly contributes to disease severity and outcome. In this review, we summarize recent developments in the understanding of how the immune system responds to dying cells, and the relevance of these discoveries to ATN. In particular, NLRP3 inflammasome activation and IL-1β-mediated neutrophil recruitment are likely to play a key role and may provide novel therapeutic targets for immunotherapy in ATN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.