Chronic organ injury leads to fibrosis and eventually organ failure. Fibrosis is characterized by excessive synthesis, remodeling, and contraction of extracellular matrix produced by myofibroblasts. Myofibroblasts are the key cells in the pathophysiology of fibrotic disorders and their differentiation can be triggered by multiple stimuli. To develop anti-fibrotic therapies, it is of paramount importance to understand the molecular basis of the signaling pathways contributing to the activation and maintenance of myofibroblasts. Several signal transduction pathways, such as transforming growth factor (TGF)-β, Wingless/Int (WNT), and more recently yes-associated protein 1 (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) signaling, have been linked to the pathophysiology of fibrosis. Activation of the TGF-β1-induced SMAD complex results in the upregulation of genes important for myofibroblast function. Similarly, WNT-stabilized β-catenin translocates to the nucleus and initiates transcription of its target genes. YAP and TAZ are two transcriptional co-activators from the Hippo signaling pathway that also rely on nuclear translocation for their functioning. These three signal transduction pathways have little molecular similarity but do share one principle: the cytosolic/nuclear regulation of its transcriptional activators. Past research on these pathways often focused on the isolated cascades without taking other signaling pathways into account. Recent developments show that parts of these pathways converge into an intricate network that governs the activation and maintenance of the myofibroblast phenotype. In this review, we discuss the current understanding on the signal integration between the TGF-β, WNT, and YAP/TAZ pathways in the development of organ fibrosis. Taking a network-wide view on signal transduction will provide a better understanding on the complex and versatile processes that underlie the pathophysiology of fibrotic disorders.
Hydrogen sulfide (H 2 S) is an endogenous gasotransmitter with physiologic functions similar to nitric oxide and carbon monoxide. Exogenous treatment with H 2 S can induce a reversible hypometabolic state, which can protect organs from ischemia/reperfusion injury, but whether cystathionine g-lyase (CSE), which produces endogenous H 2 S, has similar protective effects is unknown. Here, human renal tissue revealed abundant expression of CSE, localized to glomeruli and the tubulointerstitium. Compared with wild-type mice, CSE knockout mice had markedly reduced renal production of H 2 S, and CSE deficiency associated with increased damage and mortality after renal ischemia/reperfusion injury. Treatment with exogenous H 2 S rescued CSE knockout mice from the injury and mortality associated with renal ischemia. In addition, overexpression of CSE in vitro reduced the amount of reactive oxygen species produced during stress. Last, the level of renal CSE mRNA at the time of organ procurement positively associated with GFR 14 days after transplantation. In summary, these results suggest that CSE protects against renal ischemia/reperfusion injury, likely by modulating oxidative stress through the production of H 2 S.
Oxidative stress is a reflection of the imbalance between the production of reactive oxygen species (ROS) and the scavenging capacity of the antioxidant system. Excessive ROS, generated from various endogenous oxidative biochemical enzymes, interferes with the normal function of liver-specific cells and presumably plays a role in the pathogenesis of liver fibrosis. Once exposed to harmful stimuli, Kupffer cells (KC) are the main effectors responsible for the generation of ROS, which consequently affect hepatic stellate cells (HSC) and hepatocytes. ROS-activated HSC undergo a phenotypic switch and deposit an excessive amount of extracellular matrix that alters the normal liver architecture and negatively affects liver function. Additionally, ROS stimulate necrosis and apoptosis of hepatocytes, which causes liver injury and leads to the progression of end-stage liver disease. In this review, we overview the role of ROS in liver fibrosis and discuss the promising therapeutic interventions related to oxidative stress. Most importantly, novel drugs that directly target the molecular pathways responsible for ROS generation, namely, mitochondrial dysfunction inhibitors, endoplasmic reticulum stress inhibitors, NADPH oxidase (NOX) inhibitors, and Toll-like receptor (TLR)-affecting agents, are reviewed in detail. In addition, challenges for targeting oxidative stress in the management of liver fibrosis are discussed.
Collagens are subjected to extensive posttranslational modifications, such as lysine hydroxylation. Bruck syndrome (BS) is a connective tissue disorder characterized at the molecular level by a loss of telopeptide lysine hydroxylation, resulting in reduced collagen pyridinoline cross-linking. BS results from mutations in the genes coding for lysyl hydroxylase (LH) 2 or peptidyl-prolyl cis-trans isomerase (PPIase) FKBP65. Given that the immunophilin FKBP65 does not exhibit LH activity, it is likely that LH2 activity is somehow dependent on FKPB65. In this report, we provide insights regarding the interplay between LH2 and FKBP65. We found that FKBP65 forms complexes with LH2 splice variants LH2A and LH2B but not with LH1 and LH3. Ablating the catalytic activity of FKBP65 or LH2 did not affect complex formation. Both depletion of FKBP65 and inhibition of FKBP65 PPIase activity reduced the dimeric (active) form of LH2 but did not affect the binding of monomeric (inactive) LH2 to procollagen Iα1. Furthermore, we show that LH2A and LH2B cannot form heterodimers with each other but are able to form heterodimers with LH1 and LH3. Collectively, our results indicate that FKBP65 is linked to pyridinoline cross-linking by specifically mediating the dimerization of LH2. Moreover, FKBP65 does not interact with LH1 and LH3, explaining why in BS triple-helical hydroxylysines are not affected. Our results provide a mechanistic link between FKBP65 and the loss of pyridinolines and may hold the key to future treatments for diseases related to collagen cross-linking anomalies, such as fibrosis and cancer.collagen cross-linking | lysyl hydroxylase | FKBP65 | Bruck syndrome | fibrosis C ollagen I is an essential component of the extracellular matrix (ECM) of tissues such as bone and skin, and is involved in a wide variety of biological processes. A deregulated synthesis of collagen type I results in pathologies ranging from severe bone and skin anomalies to fibrosis (1-5). Hydroxylation of specific lysine (Lys) residues into 5-hydroxylysine (Hyl) is performed by lysyl hydroxylases (LHs), also known as the procollagen-lysine, 2-oxoglutarate 5-dioxygenase (PLOD) family. Collagens deposited in the ECM are stabilized by the formation of intermolecular crosslinks by members of the lysyl oxidase family, LOX and LOXL (6). Two collagen cross-linking pathways have been identified, the allysine route and the hydroxyallysine route (7). In the allysine route, a telopeptide Lys is oxidized by lysyl oxidases into an aldehyde; in the hydroxyallysine route, this occurs with a telopeptide Hyl. In turn, the reactive aldehydes interact with the Lys or Hyl residues in the helical part of collagen to form difunctional and finally trifunctional cross-links (8-10). The trifunctional cross-links derived from the hydroxyallysine route are referred to as pyridinolines. Collagens cross-linked by means of pyridinolines are difficult to degrade (11-13).The LH family consists of three individual members, designated LH1, LH2, and LH3. Hydroxylation of Lys present...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.