BackgroundIn the current literature, the outcome of paediatric brain injury is controversially discussed. According to the majority of the studies, there seems to be a decreased mortality but worse recovery in paediatric, traumatic brain injury in comparison with adults. However, there is a lack of information concerning the differences in various stages of development in patients younger than 18 years. The aim of our study was to verify the in-hospital outcome of different paediatric age groups in comparison to adults with respect to the treatment strategy.MethodsWe performed a retrospective analysis of the TraumaRegister DGU® from 2002 to 2012. Inclusion criteria were an Abbreviated Injury Scale (AIS) head ≥3 points and an AIS ≤2 points of the remaining body regions. The collective was divided into different subgroups according to age (1–3, 4–6, 7–10, 11–14, 15–17) and an adult control group aged between 18 and 55 years. We descriptively analysed the endpoint rate of sepsis, multiple organ failure, and mortality. Additionally, the Glasgow Outcome Scale (GOS) at discharge was observed.ResultsOverall, 1110 children and 6491 adult control patients were included. Comparing the rate of intubation on-scene, the rate of cranial CT scans, the rate of craniotomies, and the rate and length of intensive care treatment, we could only identify minor differences between the age groups. The treatment after discharge from hospital was markedly different due to a very low rate of in-patient rehabilitation treatment in children. On one hand, the rate of systemic complications, such as sepsis and multiple organ failure increased with increasing age. On the other hand, we found a significantly increased mortality in children younger than 7 years after very (AIS head = 5) severe brain injury. The in-hospital functional outcome in survivors, according to the GOS, was beneficial for younger children in comparison to adolescents and adults.ConclusionsWe were unable to identify marked age-related differences in the therapeutic approach. Nevertheless, we were able to demonstrate marked differences of outcome. Children younger than 7 years significantly die more often due to direct impact of severe trauma. But if they survive, they seem to develop less systemic complications and profit from a better functional outcome.
We report the first helium-tagged electronic spectra of cationic adamantane clusters, along with its singly, doubly, and triply dehydrogenated analogues embedded in helium droplets. Absorption spectra were measured by recording...
The adsorption of helium on charged hexabenzocoronene (Hbc, C42H18), a planar polycyclic aromatic hydrocarbon (PAH) molecule of D6h symmetry, was investigated by a combination of high-resolution mass spectrometry and classical and quantum computational methods. The ion abundance of HenHbc+ complexes versus size n features prominent local anomalies at n = 14, 38, 68, 82, and a weak one at 26, indicating that for these “magic” sizes, the helium evaporation energies are relatively large. Surprisingly, the mass spectra of anionic HenHbc− complexes feature a different set of anomalies, namely at n = 14, 26, 60, and 62, suggesting that the preferred arrangement of the adsorbate atoms depends on the charge of the substrate. The results of our quantum calculations show that the adsorbate layer grows by successive filling of concentric rings that surround the central benzene ring, which is occupied by one helium atom each on either side of the substrate. The helium atoms are fairly localized in filled rings and they approximately preserve the D6h symmetry of the substrate, but helium atoms in partially filled rings are rather delocalized. The first three rings contain six atoms each; they account for magic numbers at n = 14, 26, and 38. The size of the first ring shrinks as atoms are filled into the second ring, and the position of atoms in the second ring changes from hollow sites to bridge sites as atoms are filled into the third ring. Beyond n = 38, however, the arrangement of helium atoms in the first three rings remains essentially frozen. Presumably, another ring is filled at n = 68 for cations and n = 62 for anions. The calculated structures and energies do not account for the difference between charge states, although they agree with the measurements for the cations and show that the first solvation shell of Hbc± is complete at n = 68. Beyond that size, the adsorbate layer becomes three-dimensional, and the circular arrangement of helium changes to hexagonal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.