C. citratus essential oil and carvacrol have shown an antitumor effect on breast tumor cell lines; the main objective of this research was to evaluate the antitumor effect of the essential oil of Cymbopogon citratus (EOCc) and carvacrol on 7,12-dimethylbenz [a] anthracene (DMBA)-induced breast cancer in female rats. Cancer was induced by a single administration of DMBA at dose of 80 mg/kg body weight (BW). A total of 54 female Holtzman rats were randomly assigned into 9 groups (n = 6). Group I: PS (Physiological saline); Group II: DMBA; Groups III, IV, and V: DMBA + EOCc at doses of 50, 100 and 200 mg/kg/day BW, respectively; Groups VI, VII, and VIII: DMBA + carvacrol at doses of 50, 100 and 200 mg/kg/day BW, respectively; and group IX: DMBA + EOCc + carvacrol at doses of 100 mg/kg/day BW. The treatment lasted 14 weeks. As results, EOCc showed a reduction in tumors as well as necrosis and mitosis. Animals treated with carvacrol did not show necrosis, mitosis, or infiltration. Carvacrol at dose of 100 mg/kg/day BW revealed a significant decrease in the cumulative tumor volume down to 0.11 ± 0.05 cm3 compared to 0.38 ± 0.04 cm3 of the DMBA group (p < 0.01). It is concluded that EOCc and carvacrol had an antitumor effect on DMBA-induced breast cancer in female rats.
Thymus vulgaris L. is widely used as an ingredient in cooking and in herbal medicine. However, there is little information about its toxicity. The present study was performed to evaluate the acute and repeated 28-day oral dose toxicity of thyme essential oil in rats. For the acute toxicity test, two groups of three rats were used. The rats received a single dose of essential oil: 300 or 2,000 mg/kg of body weight (bw). The rats were observed individually during the first four hours, and then daily until day 14. For the toxicity test with repeated doses, four groups of 10 rats were used. Doses of 100, 250, and 500 mg/kg/day were tested for 28 days. At the end of the experiment, blood was collected and the animals were sacrificed. Histopathological examination showed that in the lungs of rats given the 2,000 mg/kg bw dose, polymorph nuclear infiltrates, hemosiderin macrophages, and interstitial space thickening were present. In the repeated dose study, all rats survived the 28-day treatment period and apparently showed no signs of toxicity. The hematological and biochemical parameters were not altered. The histopathological study of the organs showed severe changes in the lung, with the dose of 500 mg/kg/day; in the other organs, no alterations were observed or the changes were slight. The body weight was only altered in male rats given the 500 mg/kg dose. The relative weight of the organs did not show any significant changes. Our studies revealed that the essential oil of Thymus vulgaris has moderate oral toxicity according to the results of the acute test, whereas the results of the 28-day oral toxicity test suggest that the no-observed-adverse effect level (NOAEL) is greater than 250 mg/kg/day.
Annona muricata leaves are traditionally used as an anticancer plant in the world. The aim of this study was to evaluate the ameliorative effect of the essential oil from Annona muricata leaves (EOAm) in an experimental model of breast cancer and to determine the volatile constituents with gas chromatography-mass spectrometry (GC-MS). Thirty female rats were assigned to five groups: the control group; the DMBA (7,12-dimethylbenz[α]anthracene) group; and three groups received daily EOAm doses of 50, 100, and 200 mg/kg/day, plus DMBA, respectively. After 13 weeks of treatment, tumors were analyzed pathologically and biochemical markers in serum were noted. As a result, in GC-MS analysis, 40 compounds were identified and 4 of them were abundant: Z-caryophyllene (40.22%), followed by α-selinene (9.94%), β-pinene (8.92%), and β-elemene (7.48%). Furthermore, EOAm in a dose-dependent form produced a reduction in tumor frequency and the accumulated tumor volume was reduced by 50% and 71% with doses of 100 and 200 mg/kg, respectively. Serum levels of reduced glutathione (GSH) increased and malondialdehyde (MDA) decreased significantly compared to the DMBA group. Serum levels of vascular endothelial growth factor (VEGF) decreased significantly from 70.75 ± 7.15 pg/mL in the DMBA group to 46.50 ± 9.00 and 34.13 ± 11.50 pg/mL in groups treated with doses of 100 and 200 mg/kg, respectively. This study concludes that the EOAm leaves showed an ameliorative effect in a murine model of breast cancer.
Medicinal plants are used throughout the world and the World Health Organization supports its use by recommending quality, safety and efficacy. Minthostachys mollis is distributed in the Andes of South America and is used by the population for various diseases. While studies have shown their pharmacological properties, the information about their safety is very limited. Then, the goal of this research was to determine the acute oral toxicity and in repeated doses during 28 days of Minthostachys mollis essential oil (Mm-EO) in rats. For the acute toxicity test two groups of rats, of three animals each, were used. Each group received Mm-EO in a single dose of 2000 or 300 mg/kg of body weight. For the repeated dose toxicity test, four groups of 10 rats each were used. Doses of 100, 250 and 500 mg/kg/day were used, one group was control. With the single dose of Mm-EO of 2000 mg/kg of body weight, the three rats in the group showed immediate signs of toxicity and died between 36 and 72 hours. In the lung, inflammatory infiltrate was observed, predominantly lymphocytic with severe hemorrhage and presence of macrophages with hemosiderin. In the repeated dose study, male rats (5/5) and female rats (2/5) died at the dose of 500 mg/kg/day. The body weight of both male and female rats decreased significantly with doses of 250 and 500 mg/kg/day. The serum levels of AST and ALT increased significantly and the histopathological study revealed chronic and acute inflammatory infiltrate in the lung; while in the liver was observed in 80% of the cases (24/30) mild chronic inflammatory infiltrate and in some of those cases there was vascular congestion and in one case cytoplasmic vacuolization. The Mm-EO presented moderate acute oral toxicity, while with repeated doses for 28 days; there was evidence of toxicity, in a dose-dependent manner, mainly at the hepatic level.
The objective of this study was to evaluate the chemopreventive effect of the ethanolic extract of Cordia lutea flowers (EECL) on N-methyl-N-nitrosourea- (MNU), cyproterone-, and testosterone-induced prostate cancer in rats. 40 Holtzman male rats were used and assigned to 5 groups (n = 8). In Group I, rats received normal saline (10 mL/Kg); Group II: rats were induced for prostate cancer with cyproterone, testosterone, and NMU; Groups III, IV, and V: rats received EECL daily, at doses of 50, 250, and 500 mg/kg body weight, respectively. After the period of treatment, animals were sacrificed by an overdose of pentobarbital and blood samples were collected for determination of prostate-specific antigen (PSA). The prostate was dissected and weighed accurately. The ventral lobe of the prostate was processed for histopathology analysis. The somatic prostate index decreased with EECL at dependent dose, from 0.34 ± 0.04 to 0.23 ± 0.05 (P<0.05). The PSA levels also decreased significantly at doses of 250 and 500 mg/kg. Histopathological analysis showed a decrease in the number of prostatic layers with high-grade prostatic intraepithelial neoplasia (HG-PIN) and low-grade prostatic intraepithelial neoplasia (LG-PIN) at the dose of 500 mg/kg. The ethanolic extract of Cordia lutea flowers had a chemopreventive effect on induced prostate cancer in rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.