Antihypertensive treatment may reduce prolonged QT duration in hypertension. Generally, the reductions of blood pressure and/or of cardiac mass are believed to be the responsible factors. However, drugs are not equivalent in QT modulation despite similar antihypertensive and antihypertrophic action. We investigated the effect of a calcium channel blocker, lacidipine and an angiotensin-converting enzyme inhibitor, enalapril on QT duration in rats. Normotensive Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) were treated with lacidipine (at the dose of 1.5 mg/kg per day for WKY and 3 mg/kg per day for SHR) or enalapril (5 mg/kg per day for WKY and 10 mg/kg per day for SHR) during 8 weeks. Tail-cuff systolic blood pressure (sBP), left ventricular weight (LVW), vascular function of isolated aorta and mesenteric artery and duration of QT (and QTc) interval on Frank electrocardiograms were evaluated. As expected, untreated SHR showed elevated sBP, impaired vascular reactivity, increased LVW and prolonged QT when compared with WKY (p < 0.05). After treatment, both agents markedly improved vascular reactivity and reduced sBP in SHR (p < 0.05). Additionally, enalapril reduced LVW in both hypertensive (by 17%; p < 0.05) and normotensive rats (by 13%; p < 0.05) and, consequently, corrected QT duration in SHR. Interestingly, lacidipine also reduced LVW in SHR (by 9%; p < 0.05), but without influence on prolonged QT. Moreover, lacidipine had no effect on LVW in WKYs but prolonged their QT interval (by 10%; p < 0.05). In conclusion, lacidipine did not reverse a progressive prolongation of QT in SHR, despite sBP lowering and LVW reduction. Thus, the lowering of blood pressure and/or reduction of LVW are not sufficient per se to normalize ventricular repolarization in hypertensive cardiac disease. More likely, modulation of QT prolongation by antihypertensive drugs is a function of their complex action on blood pressure, vascular function, cardiac mass and on reflex neurohumoral activation.The QT interval, a measure of cardiac repolarization, reflects several physiological conditions and is a non-specific marker of cardiotoxicity of drugs and cardiac pathology [1][2][3]. Prolonged QT interval (and its heart-rate correction; QTc) is independently associated with an increased risk of sudden cardiac death [4]. In addition, QT prolongation is a well known, but non-specific sign of the presence of left ventricular hypertrophy (LVH) in hypertension [5]. Consequently, its reduction is thought to be associated with regression of cardiac hypertrophy in terms of the reduction of left ventricular mass. Indeed, it was shown that antihypertensive drugs reduce QT duration as well as cardiac mass in hypertensive subjects which in turn reduces the incidence and severity of ventricular arrhythmias and the risk for cardiovascular events [6][7][8]. Still, the relationship between QT reduction, antihypertensive and antihypertrophic action of antihypertensives is not understood.Any agent that reduces blood pressure (BP) ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.