SARS-CoV-2 is evolving with mutations in the receptor binding domain (RBD) being of particular concern. It is important to know how much cross-protection is offered between strains following vaccination or infection. Here, we obtain serum and saliva samples from groups of vaccinated (Pfizer BNT-162b2), infected and uninfected individuals and characterize the antibody response to RBD mutant strains. Vaccinated individuals have a robust humoral response after the second dose and have high IgG antibody titers in the saliva. Antibody responses however show considerable differences in binding to RBD mutants of emerging variants of concern and substantial reduction in RBD binding and neutralization is observed against a patient-isolated South African variant. Taken together our data reinforce the importance of the second dose of Pfizer BNT-162b2 to acquire high levels of neutralizing antibodies and high antibody titers in saliva suggest that vaccinated individuals may have reduced transmission potential. Substantially reduced neutralization for the South African variant further highlights the importance of surveillance strategies to detect new variants and targeting these in future vaccines.
The SARS-CoV-2 pandemic virus is consistently evolving with mutations within the receptor binding domain (RBD) being of particular concern. To date, there is little research into protection offered following vaccination or infection against RBD mutants in emerging variants of concern (UK, South African, Mink and Southern California). To investigate this, serum and saliva samples were obtained from groups of vaccinated (Pfizer BNT-162b2), infected and uninfected individuals. Antibody responses among groups, including salivary antibody response and antibody binding to RBD mutant strains were examined. The neutralization capacity of the antibody response against a patient-isolated South African variant was tested by viral neutralization tests and further verified by an ACE2 competition assay. We found that humoral responses in vaccinated individuals showed a robust response after the second dose. Interestingly, IgG antibodies were detected in large titers in the saliva of vaccinated subjects. Antibody responses showed considerable differences in binding to RBD mutants in emerging variants of concern. A substantial reduction in RBD binding and neutralization was detected for the South African variant. Taken together our data reinforces the importance of administering the second dose of Pfizer BNT-162b2 to acquire high levels of neutralizing antibodies. High antibody titers in saliva suggest that vaccinated individuals may have reduced transmission potential. Substantially reduced neutralization for the South African variant highlights importance of surveillance strategies to detect new variants and targeting these in future vaccines.
While vaccination campaigns are ongoing worldwide, there is still a tremendous medical need for efficient antivirals against SARS-CoV-2 infection. Among several drug candidates, chloroquine (CQN) and hydroxychloroquine (H-CQN) were tested intensively, and any contentious therapeutic effect of both has been discussed controversially in the light of severe side effects and missing efficacy. Originally, H-CQN descended from the natural substance quinine, a medicinal product used since the Middle Ages, which actually is regulatory approved for various indications. We hypothesized that quinine also exerts anti-SARS-CoV-2 activity. In Vero cells, quinine inhibited SARS-CoV-2 infection more effectively than CQN, and H-CQN and was less toxic. In human Caco-2 colon epithelial cells as well as the lung cell line A549 stably expressing ACE2 and TMPRSS2, quinine also showed antiviral activity. In consistence with Vero cells, quinine was less toxic in A549 as compared to CQN and H-CQN. Finally, we confirmed our findings in Calu-3 lung cells, expressing ACE2 and TMPRSS2 endogenously. In Calu-3, infections with high titers of SARS-CoV-2 were completely blocked by quinine, CQN, and H-CQN in concentrations above 50 µM. The estimated IC50s were ~25 µM in Calu-3, while overall, the inhibitors exhibit IC50 values between ~3.7 to ~50 µM, dependent on the cell line and multiplicity of infection (MOI). Conclusively, our data indicate that quinine could have the potential of a treatment option for SARS-CoV-2, as the toxicological and pharmacological profile seems more favorable when compared to its progeny drugs H-CQN or CQN.
SARS-CoV-2 infection induces interferon-stimulated genes, one of which encodes Tetherin, a transmembrane protein inhibiting the release of various enveloped viruses from infected cells. Previous studies revealed that SARS-CoV encodes two Tetherin antagonists: the Spike protein (S) inducing lysosomal degradation of Tetherin, and ORF7a altering its glycosylation. SARS-CoV-2 ORF7a has also been shown to antagonize Tetherin. Therefore, we here investigated whether SARS-CoV-2 S is also a Tetherin antagonist and compared the abilities and mechanisms of S and ORF7a in counteracting Tetherin. SARS-CoV and SARS-CoV-2 S reduced Tetherin cell surface levels in a cell type-dependent manner, possibly related to the basal protein levels of Tetherin. In HEK293T cells, under conditions of high exogenous Tetherin expression, SARS-CoV-2 S and ORF7a reduced total Tetherin levels much more efficiently than the respective counterparts derived from SARS-CoV. Nevertheless, ORF7a from both strains was able to alter Tetherin glycosylation. The ability to decrease total protein levels of Tetherin was conserved among S proteins from different SARS-CoV-2 variants (D614G, Cluster 5, α, γ, δ, ο). While SARS-CoV-2 S and ORF7a both colocalized with Tetherin, only ORF7a directly interacted with the restriction factor. Despite the presence of two Tetherin antagonists, however, SARS-CoV-2 replication in Caco-2 cells was further enhanced upon Tetherin knockout. Altogether, our data show that endogenous Tetherin restricts SARS-CoV-2 replication, and that the antiviral activity of Tetherin is partially counteracted by two viral antagonists with differential and complementary modes of action, S and ORF7a.IMPORTANCEViruses have adopted multiple strategies to cope with innate antiviral immunity. They blunt signaling and encode proteins that counteract antiviral host factors. One such factor is Tetherin, that tethers nascent virions to the cell membrane and interferes with virus release. For SARS-CoV, the viral glycoprotein Spike (S) and the accessory protein ORF7a are Tetherin antagonists. For pandemic SARS-CoV-2, such activity has only been shown for ORF7a. We therefore analyzed whether SARS-CoV-2 S is a Tetherin-counteracting protein and whether there are differences in the abilities of the viral proteins to antagonize Tetherin. Of note, the efficiency of Tetherin antagonism was more pronounced for S and ORF7a from SARS-CoV-2 compared to their SARS-CoV orthologs. Still, Tetherin was able to restrict SARS-CoV-2 replication. Our results highlight the fundamental importance of the innate immune response in the context of SARS-CoV-2 control and the evolutionary pressure on pathogenic viruses to withhold efficient Tetherin antagonism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.