Antibody dependent cellular cytotoxicity (ADCC) is an Fc-dependent effector function of IgG important for anti-viral immunity and anti-tumor therapies. NK-cell mediated ADCC is mainly triggered by IgG-subclasses IgG1 and IgG3 through the IgG-Fcreceptor (FcγR) IIIa. Polymorphisms in the immunoglobulin gamma heavy chain gene likely form a layer of variation in the strength of the ADCC-response, but this has never been studied in detail. We produced all 27 known IgG allotypes and assessed FcγRIIIa binding and ADCC activity. While all IgG1, IgG2, and IgG4 allotypes behaved similarly within subclass, large allotype-specific variation was found for IgG3. ADCC capacity was affected by residues 291, 292, and 296 in the CH2 domain through altered affinity or avidity for FcγRIIIa. Furthermore, allotypic variation in hinge length affected ADCC, likely through altered proximity at the immunological synapse. Thus, these functional differences between IgG allotypes have important implications for therapeutic applications and susceptibility to infectious-, allo-or auto-immune diseases.
Schistosomes, parasitic flatworms that cause the tropical disease schistosomiasis, are still a threat. They are responsible for 200 million infections worldwide and an estimated 280,000 deaths annually in sub-Saharan Africa alone. The adult parasites reside as pairs in the mesenteric or perivesicular veins of their human host, where they can survive for up to 30 years. The parasite is a potential activator of blood coagulation according to Virchow's triad, because it is expected to alter blood flow and endothelial function, leading to hypercoagulability. In contrast, hepatosplenic schistosomiasis patients are in a hypocoagulable and hyperfibrinolytic state, indicating that schistosomes interfere with the haemostatic system of their host. In this review, the interactions of schistosomes with primary haemostasis, secondary haemostasis, fibrinolysis, and the vascular tone will be discussed to provide insight into the reduction in coagulation observed in schistosomiasis patients.Interference with the haemostatic system by pathogens is a common mechanism and has been described for other parasitic worms, bacteria, and fungi as a mechanism to support survival and spread or enhance virulence. Insight into the mechanisms used by schistosomes to interfere with the haemostatic system will provide important insight into the maintenance of the parasitic life cycle within the host. This knowledge may reveal new potential anti-schistosome drug and vaccine targets. In addition, some of the survival mechanisms employed by schistosomes might be used by other pathogens, and therefore, these mechanisms that interfere with host haemostasis might be a broad target for drug development against blood-dwelling pathogens. Also, schistosome antithrombotic or thrombolytic molecules could form potential new drugs in the treatment of haemostatic disorders.
SummaryIn order to cause colonization and invasive disease, pathogenic bacteria secrete proteins that modulate host immune defences. Identification and characterization of these proteins leads to a better understanding of the pathological processes underlying infectious and inflammatory diseases and is essential in the development of new strategies for their prevention and treatment. Current techniques to functionally characterize these proteins are laborious and inefficient. Here we describe a high-throughput functional selection strategy using phage display in order to identify immune evasion proteins. Using this technique we identified two previously uncharacterized proteins secreted by Staphylococcus aureus, SElX and SSL6 that bind to neutrophil surface receptors. SElX binds PSGL-1 on neutrophils and thereby inhibits the interaction between PSGL-1 and P-selectin, a crucial step in the recruitment of neutrophils to the site of infection. SSL6 is the first bacterial protein identified that binds CD47, a widely expressed cell surface protein recently described as an interesting target in anti-cancer therapy. Our findings provide new insights into the pathogenesis of S. aureus infections and support phage display as an efficient method to identify bacterial secretome proteins interacting with humoral or cellular immune components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.