Identification of metabolites in large-scale 1 H NMR data from human biofluids remains challenging due to the complexity of the spectra and their sensitivity to pH and ionic concentrations. In this work, we tested the capacity of three analysis tools to extract metabolite signatures from 968 NMR profiles of human urine samples. Specifically, we studied sets of covarying features derived from principal component analysis (PCA), the iterative signature algorithm (ISA), and averaged correlation profiles (ACP), a new method we devised inspired by the STOCSY approach. We used our previously developed metabomatching method to match the sets generated by these algorithms to NMR spectra of individual metabolites available in public databases. On the basis of the number and quality of the matches, we concluded that ISA and ACP can robustly identify ten and nine metabolites, respectively, half of which were shared, while PCA did not produce any signatures with robust matches.
Identification of metabolites in large-scale 1 H NMR data from human biofluids remains challenging due to the complexity of the spectra and their sensitivity to pH and ionic concentrations. In this work, we test the capacity of three analysis tools to extract metabolite signatures from 968 NMR profiles of human urine samples. Specifically, we studied sets of co-varying features derived from Principal Component Analysis (PCA), the Iterative Signature Algorithm (ISA) and Averaged Correlation Profiles (ACP), a new method we devised inspired by the STOCSY approach. We used our previously developed metabomatching method to match the sets generated by these algorithms to NMR spectra of individual metabolites available in public databases. Based on the number and quality of the matches we concluded that both ISA and ACP can robustly identify about a dozen metabolites, half of which were shared, while PCA did not produce any signatures with robust matches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.