Spike discharges of skeletomotor neurons innervating triceps surae muscles elicited by white noise modulated transmembrane current stimulation and muscle stretch were studied in decerebrated cats. The white noise modulated current intensity ranged from 4.3 to 63.2 nA peak-to-peak, while muscle stretches ranged from 100 microns to 4.26 mm peak-to-peak. The neuronal responses were studied by averaging the muscle length records centered at the skeletomotor action potentials (peri-spike average, PSA) and by Wiener analysis. Skeletomotor spikes appeared after a sharp peak in PSA of the injected current, preceded by a longer-lasting smaller wavelet of either depolarizing or hyperpolarizing direction. The PSA amplitude was not related to the injected current amplitude nor showed any differences related to the motor unit type. The PSA amplitudes were virtually independent of the stretching amplitude sigma, after an initial increase with stretching amplitudes in the range of 15-40 microns (S.D.), or 100-270 microns peak-to-peak. Analyses of cross-spectra indicated a small or absent increase in gain with frequency in response to injected current, but about 20 dB/decade in the range 10-100 Hz in response to muscle stretch. The peaks of both Wiener kernels in response to current injection appear to decrease with the amplitude of injected current, but this decrease was not statistically significant. The narrow first-order kernels suggest that the transfer function between the current input and spike discharge is lowpass with a wide passband, i.e. there is very little change in dynamics. The values of the second-order kernels appear to be nonzero only along the main diagonal.(ABSTRACT TRUNCATED AT 250 WORDS)
Spike discharges of skeletomotor neurons innervating triceps surae muscles elicited by white noise modulated transmembrane current stimulation and muscle stretch were studied in decerebrated cats. The white noise modulated current intensity ranged from 4.3 to 63.2 nA peak-to-peak, while muscle stretches ranged from 100 microns to 4.26 mm peak-to-peak. The neuronal responses were studied by averaging the muscle length records centered at the skeletomotor action potentials (peri-spike average, PSA) and by Wiener analysis. Skeletomotor spikes appeared after a sharp peak in PSA of the injected current, preceded by a longer-lasting smaller wavelet of either depolarizing or hyperpolarizing direction. The PSA amplitude was not related to the injected current amplitude nor showed any differences related to the motor unit type. The PSA amplitudes were virtually independent of the stretching amplitude sigma, after an initial increase with stretching amplitudes in the range of 15-40 microns (S.D.), or 100-270 microns peak-to-peak. Analyses of cross-spectra indicated a small or absent increase in gain with frequency in response to injected current, but about 20 dB/decade in the range 10-100 Hz in response to muscle stretch. The peaks of both Wiener kernels in response to current injection appear to decrease with the amplitude of injected current, but this decrease was not statistically significant. The narrow first-order kernels suggest that the transfer function between the current input and spike discharge is lowpass with a wide passband, i.e. there is very little change in dynamics. The values of the second-order kernels appear to be nonzero only along the main diagonal.(ABSTRACT TRUNCATED AT 250 WORDS)
The properties of membrane potential changes of skeletomotor neurons (S, FR, and FF) innervating triceps surae muscles during pseudorandom stretching of these muscles were studied in decerebrate cats. Peak amplitudes of pseudorandom muscle stretches ranged from 119 microns to 4.15 mm peak-to-peak. Sequences of ten identical stretching periods were applied for averaging. Shapes of membrane potential changes and probability density distribution of amplitudes of the input and output signals and power spectra suggest that the skeleto-motor neuron membrane has nonlinear properties. First- and second-order Wiener kernels were determined by applying the cross-correlation (Lee-Schetzen) method. The results suggest that the transfer function between muscle stretches and subthreshold membrane potentials is a Wiener-type cascade. This cascade is consistent with a linear, second-order, underdamped transfer function followed by a simple quadratic nonlinearity [linear (L) system followed by nonlinear (N) system, or LN cascade]. Including the nonlinear component calculated from the second-order Wiener kernel improved the model significantly over its linear counterpart, especially in S-type motoneurons. Qualitatively similar results were obtained with all types of motoneurons studied.
1.0 To our knowledge, not much has been written in Yugoslav publications, or at least not in great detail, about the development and features of the speech of twins. In foreign publications, psychologists have been the main contributors on this subject. In our opinion, the speech development of twins warrants special attention within the scope of recent studies of child speech. With this in mind, we have decided to write about some features of that development between the ages of 1,1 and 2,5. At the start, we shall take as a priori some of the assumptions and conclusions of Tatiana Slama-Cazacu, Reno Zazzo and the two Soviet authors, A. R. Luria and F. Ja. Judovic. 2 We wish to show the process of syntactic formation of dialogues between twins. This is our aim because of the well-known assertion that the slow development of twin speech is best reflected in the area of syntax. We shall undertake the analysis of some features of the dialogues of twins. 3 We intend to show that the twins we had under observation, during their dialogue with each other, do not use any special language 'unintelligible to those around them'. We also intend to show that the 'telegraphic style' which they often use assumes the knowledge of a more complex deep sentence structure which is not realized verbally because of the twin-situation and because of the context in which the statements are made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.