Although the positive effects of different kinds of physical activity (PA) on cognitive functioning have already been demonstrated in a variety of studies, the role of cognitive engagement in promoting children’s executive functions is still unclear. The aim of the current study was therefore to investigate the effects of two qualitatively different chronic PA interventions on executive functions in primary school children. Children (N = 181) aged between 10 and 12 years were assigned to either a 6-week physical education program with a high level of physical exertion and high cognitive engagement (team games), a physical education program with high physical exertion but low cognitive engagement (aerobic exercise), or to a physical education program with both low physical exertion and low cognitive engagement (control condition). Executive functions (updating, inhibition, shifting) and aerobic fitness (multistage 20-m shuttle run test) were measured before and after the respective condition. Results revealed that both interventions (team games and aerobic exercise) have a positive impact on children’s aerobic fitness (4–5% increase in estimated VO2max). Importantly, an improvement in shifting performance was found only in the team games and not in the aerobic exercise or control condition. Thus, the inclusion of cognitive engagement in PA seems to be the most promising type of chronic intervention to enhance executive functions in children, providing further evidence for the importance of the qualitative aspects of PA.
Classroom-based physical activity breaks are postulated to positively impact children's attention during their school day. However, empirical evidence for this claim is scarce and the role of cognitive engagement in enhancing children's attentional performance is unexplored in studies on physical activity breaks. The aim of the present study was therefore to disentangle the separate and/or combined effects of physical exertion and cognitive engagement induced by physical activity breaks on primary school children's attention. In addition, the role of children's affective reactions to acute interventions at school was investigated. Using a 2 × 2 between-subjects experimental design, 92 children between the ages of 11 and 12 years (M = 11.77, SD = 0.41) were randomly assigned to one of four experimental conditions: (1) combo group (physical activity with high cognitive demands), (2) cognition group (sedentary with high cognitive demands), (3) physical group (physical activity with low cognitive demands), and (4) control group (sedentary with low cognitive demands). Attention and affect were measured before and immediately after a 10-min intervention. ANCOVAs revealed that whereas physical exertion had no effect on any measure of children's attentional performance, cognitive engagement was the crucial factor leading to increased focused attention and enhanced processing speed. Mediational analyses showed that changes in positive affect during the interventions mediated the effect between cognitive engagement and focused attention as well as between cognitive engagement and processing speed. These surprising results are discussed in the light of theories predicting both facilitating and deteriorative effects of positive affect on attention.
Background Children with ADHD frequently suffer from deficits in cognitive (ie, executive functions) and motor abilities. Although medication usually has a positive effect, a lack of commitment and possible side effects result in a need for adjunct or alternative treatments. Thus, the aim of the current study was to investigate the effects of cognitively and physically demanding exergaming on executive functions, ADHD symptoms, and motor abilities. Methods In a parallel group randomized trial, 51 children between 8‐12 years (M = 10.63; SD = 1.32) diagnosed with ADHD were assigned either to an 8‐week exergame intervention group (three training sessions per week for 30 minutes) or a waiting‐list control group. The core executive functions (inhibition, switching, updating), parent ratings of symptoms, and motor abilities were assessed/gathered before and after the intervention. Results Analyses of covariance (using pre‐test values as covariates) revealed that children in the exergame intervention group improved in specific executive functions (reaction times in inhibition and switching), general psychopathology as well as motor abilities compared to control group. Conclusions Findings indicate that exergaming might benefit two domains in which frequent deficits can be observed in children with ADHD, executive functions and motor abilities. Given that these beneficial effects in turn might positively affect psychopathology, exergaming could serve as an individualized home‐based intervention in the future. However, in order to maximize benefits and make exergaming a valuable adjunct to treatment for children with ADHD, customized exergames are needed.
Even though positive relations between children’s motor ability and their academic achievement are frequently reported, the underlying mechanisms are still unclear. Executive function has indeed been proposed, but hardly tested as a potential mediator. The aim of the present study was therefore to examine the mediating role of executive function in the relationship between motor ability and academic achievement, also investigating the individual contribution of specific motor abilities to the hypothesized mediated linkage to academic achievement. At intervals of ten weeks, 236 children aged between 10 and 12 years were tested in terms of their motor ability (t1: cardiovascular endurance, muscular strength, motor coordination), core executive functions (t2: updating, inhibition, shifting), and academic achievement (t3: mathematics, reading, spelling). Structural equation modelling revealed executive function to be a mediator in the relation between motor ability and academic achievement, represented by a significant indirect effect. In separate analyses, each of the three motor abilities were positively related to children’s academic achievement. However, only in the case of children’s motor coordination, the mediation by executive function accounted for a significance percentage of variance of academic achievement data. The results provide evidence in support of models that conceive executive function as a mechanism explaining the relationship that links children’s physical activity-related outcomes to academic achievement and strengthen the advocacy for quality physical activity not merely focused on health-related physical fitness outcomes, but also on motor skill development and learning.
Classroom-based physical activity (PA) is gaining attention in terms of its potential to enhance children’s cognitive functions, but it remains unclear as to which specific modality of PA affects cognitive functions most. The aim of the study was to examine the effects of qualitatively different PA breaks on children’s cognitive outcomes. Children ( N = 142) aged between 7 and 9 years were allocated to a 20-week classroom-based PA program, with either high physical exertion and high cognitive engagement ( combo group ), high physical exertion and low cognitive engagement ( aerobic group ), or low physical exertion and high cognitive engagement ( cognition group ). Executive functions (updating, inhibition, shifting) and academic achievement (mathematics, spelling, reading) were measured pre- and post-intervention. Results showed that the combo group profited the most displaying enhanced shifting and mathematic performance. The cognition group profited only in terms of enhanced mathematic performance, whereas the aerobic group remained unaffected. These results suggest that the inclusion of cognitively engaging PA breaks seem to be a promising way to enhance school children’s cognitive functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.