This paper presents a new combined neural network and chaos based pseudorandom sequence generator and a DNA-rules based chaotic encryption algorithm for secure transmission and storage of images. The proposed scheme uses a new heterogeneous chaotic neural network generator controlling the operations of the encryption algorithm: pixel position permutation, DNA-based bit substitution and a new proposed DNA-based bit permutation method. The randomness of the generated chaotic sequence is improved by dynamically updating the control parameters as well as the number of iterations of the chaotic functions in the neural network. Several tests including auto correlation, 0/1 balance and NIST tests are performed to show high degree of randomness of the proposed chaotic generator. Experimental results such as pixel correlation coefficients, entropy, NPCR and UACI etc. as well as security analyses are given to demonstrate the security and efficiency of the proposed chaos based genetic encryption method.
Primary failure of eruption is characterized by a non-syndromic eruption
failure of permanent teeth in the absence of any mechanical obstruction.
Applying orthodontic traction to teeth affected by PFE will not be
successful and may cause ankylosis. This correspondence reviews and
demonstrates the treatment of a case of PFE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.