Atomic Diffusion AdditiveManufacturing (ADAM) is a recent metal sintering process based on known composite printing technology. ADAM can be classified as indirect additive production using fibre of metal powder bound in a plastic matrix. The plastic binder allows the metal powder to remain in place when is printing. Thus, a "green part" is printed and then the plastic binder is removed by the postwashing and sintering process. The aim of this work is providing a brief description of the ADAM process patented by Markforged. Furthermore, the main task was to compare the technology with other sintering technology, namely SLM technology. It works on the basis of selective bonding of metal powder using the thermal energy of the laser beam. Parameters, such as dimensional and shape accuracy, roughness of printed surfaces or tensile strength of printed samples were examined and compared. Dimensional accuracy of the ADAM process was evaluated using ISO IT grades -determined on the basis of the reference standard. The observed accuracy of the sintering process was comparable to traditional production processes.
Machining with rotating tools appears to be an efficient method that employs a non-standard kinematic turning scheme. It is used in the machining of materials that we classify in the category of difficult to machine. The titanium alloy Ti-6Al-4V, which is widely used in industry and transportation, is an example of such material. Rotary tool machining of titanium alloys has not been the subject of many studies. Additionally, if researchers were dissatisfied with their findings, the reason may not be the kinematic machining scheme itself but rather the tool design and the choice of cutting parameters. When tools are constructed of several components, inaccuracies in production and assembly can arise, resulting in deviations in the cutting part area. A monolithic driven rotary tool eliminates these factors. In the machining process, however, it may react differently from multi-component tools. The presented work focuses on the research of the technology for machining titanium alloy Ti-6Al-4V using a monolithic driven rotary tool. The primary goal is to gather data on the impact of cutting parameters on the machining process. The cutting force and the consequent integrity of the workpiece surface are used to monitor the process. The speed of workpiece rotation has the greatest impact on the process; as it increases, the cutting force increases, as do the values of the surface roughness. In the experiment, lower surface roughness values were attained by increasing the feed parameter and the depth of cut. This may predetermine the inclusion of a kinematic scheme in highly productive technologies.
There is a lot of applications for manipulating industrial robots nowadays. Maximizing the tasks that can be assigned to robot manipulators is one of the criteria for deciding if their application is appropriate. The article discusses the topology optimization of the gripping jaws of an industrial robot to reduce the jaws' weight. The previously used gripping element made of C50E steel was optimized to reduce the weight of the jaws. Shape optimization was performed based on analysis from CAD programs Inventor Professional 2022, Autodesk Fusion 360, and Ansys Discovery. The new jaws were manufactured by the additive technology of selective laser sintering (SLS) from PA12 material. The optimization resulted in a significant reduction in weight compared to the original jaws. As a result of optimizing the weight of the designed jaws, it was possible to increase the weight of the object of manipulation.
The work deals with the possibility of using additive technology in the production of positioning and clamping device. The designed clamping device will facilitate and accelerate the measurement of sam-ples with inclined or different irregular surfaces. The designed device is manufactured by additive technology using composites. Onyx material reinforced with Kevlar fibers was used as material for composite printing. The designed device should achieve the required properties for the firm and stable clamping of the components during the measurement process, and its weight should be significantly reduced with the use of composite material.
Today's milling cutting tools are produced in various types and shapes for a wide variety of machining processes. Development continues and offers new technological solutions. The design of replaceable milling heads offers a significant cost reduction, as only the worn-out part is replaced instead of the entire tool. The tough connection between the tool and the shank achieves stable performance in roughing and finishing milling. Because of the possibility of using different milling inserts, the number of necessary tools will also be reduced and the flexibility of using milling tools will increase. The article examines the cutting forces when machining a milling head produced by additive technology using composite Onyx material, which is reinforced with carbon fibre. The article deals with a comparison of two machined materials using a composite milling cutter and also contains a comparison with a conventional milling cutter. Cutting Forces Milling Head Additive Production
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.