Solid catalysts with ionic liquid layers (SCILLs) have recently attracted a lot of attention, as the ionic liquid (IL) coating can give rise to drastically improved selectivity. Here, we studied the interaction of the IL 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)-imide [C 4 C 1 Pyr]-[NTf 2 ] with Pt(111) and Pt nanoparticles (NPs) on highly oriented pyrolytic graphite under ultrahigh vacuum conditions. The IL film on Pt(111) and on the Pt NPs consists of a strongly bound monolayer and a weakly bound bulk phase. In the monolayer, [NTf 2 ] − adopts cis conformation and binds via the SO 2 groups. Adsorption of [NTf 2 ] − at Pt defect sites is preferred to adsorption at terraces, whereas preadsorbed CO blocks the adsorption at defects. Further, IL coadsorption leads to desorption and displacement of on-top CO on terraces, whereas CO resides in the bridging position. IL multilayers desorb at 380 K, whereas the strongly adsorbed monolayer on Pt resides and gradually desorbs and decomposes between 400 and 500 K. Finally, we studied the permeability of IL layers for CO by pressure modulation experiments in combination with in situ infrared reflection absorption spectroscopy. We show that the IL multilayer completely blocks CO adsorption, whereas CO easily penetrates the IL monolayer film and forms a mixed adsorbate phase. It is noteworthy that dynamic CO adsorption is much more facile on Pt NPs than on Pt(111). Our results suggest that strongly adsorbed IL monolayers may play an important role in real SCILLs.
Molecular interfaces formed between metals and molecular compounds offer a great potential as building blocks for future opto-electronics and spintronics devices. Here, a combined theoretical and experimental spectro-microscopy approach is used to show that the charge transfer occurring at the interface between nickel tetraphenyl porphyrins and copper changes both spin and oxidation states of the Ni ion from [Ni(II), S = 0] to [Ni(I), S = 1/2]. The chemically active Ni(I), even in a buried multilayer system, can be functionalized with nitrogen dioxide, allowing a selective tuning of the electronic properties of the Ni center that is switched to a [Ni(II), S = 1] state. While Ni acts as a reversible spin switch, it is found that the electronic structure of the macrocycle backbone, where the frontier orbitals are mainly localized, remains unaffected. These findings pave the way for using the present porphyrin-based system as a platform for the realization of multifunctional devices where the magnetism and the optical/ transport properties can be controlled simultaneously by independent stimuli.The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/smll.202104779.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.