With the emergence of 5G low-latency applications, such as haptics and V2X, low-complexity and low-latency security mechanisms are needed. Promising lightweight mechanisms include physical unclonable functions (PUF) and secret key generation (SKG) at the physical layer, as considered in this paper. In this framework, we propose (i) a zero round trip time (0-RTT) resumption authentication protocol combining PUF and SKG processes, (ii) a novel authenticated encryption (AE) using SKG, and (iii) pipelining of the AE SKG and the encrypted data transfer in order to reduce latency. Implementing the pipelining at PHY, we investigate a parallel SKG approach for multi-carrier systems, where a subset of the subcarriers are used for SKG and the rest for data transmission. The optimal solution to this PHY resource allocation problem is identified under security, power, and delay constraints, by formulating the subcarrier scheduling as a subset-sum 0 − 1 knapsack optimization. A heuristic algorithm of linear complexity is proposed and shown to incur negligible loss with respect to the optimal dynamic programming solution. All of the proposed mechanisms have the potential to pave the way for a new breed of latency aware security protocols.
Wireless secret key generation (W-SKG) from shared randomness (e.g., from the wireless channel fading realizations), is a well established scheme that can be used for session key agreement. W-SKG approaches can be of particular interest in delay constrained wireless networks and notably in the context of ultra reliable low latency communications (URLLC) in beyond fifth generation (B5G) systems. However W-SKG schemes are known to be malleable over the so called "advantage distillation" phase, during which observations of the shared randomness are obtained at the legitimate parties. As an example, an active attacker can act as a man-in-themiddle (MiM) by injecting pilot signals and/or can mount denial of service attacks (DoS) in the form of jamming. This paper investigates the impact of injection and reactive jamming attacks in W-SKG. First, it is demonstrated that injection attacks can be reduced to -potentially less harmful -jamming attacks by pilot randomization; a novel system design with randomized QPSK pilots is presented. Subsequently, the optimal jamming strategy is identified in a block fading additive white Gaussian noise (BF-AWGN) channel in the presence of a reactive jammer, using a game theoretic formulation. It is shown that the impact of a reactive jammer is far more severe than that of a simple proactive jammer.Index Terms-Wireless secret key agreement, shared randomness, injection attack, man-in-the-middle, denial of service attack, jamming.
Lightweight physical layer security schemes that have recently attracted a lot of attention include physical unclonable functions (PUFs), RF fingerprinting / proximity based authentication and secret key generation (SKG) from wireless fading coefficients. In this paper, we propose a fast, privacy-preserving, zero-round-trip-time (0-RTT), multi-factor authentication protocol, that for the first time brings all these elements together, i.e., PUFs, proximity estimation and SKG. We use Kalman filters to extract proximity estimates from real measurements of received signal strength (RSS) in an indoor environment to provide soft fingerprints for node authentication. By leveraging node mobility, a multitude of such fingerprints are extracted to provide resistance to impersonation type of attacks e.g., a false base station. Upon removal of the proximity fingerprints, the residual measurements are then used as an entropy source for the distillation of symmetric keys and subsequently used as resumption secrets in a 0-RTT fast authentication protocol. Both schemes are incorporated in a challenge-response PUF-based mutual authentication protocol, shown to be secure through formal proofs using Burrows, Abadi, and Needham (BAN) and Mao and Boyd (MB) logic, as well as the Tamarin-prover. Our protocol showcases that in future networks purely physical layer security solutions are tangible and can provide an alternative to public key infrastructure in specific scenarios.
While existing security protocols were designed with a focus on the core network, the enhancement of the security of the B5G access network becomes of critical importance. Despite the strengthening of 5G security protocols with respect to LTE, there are still open issues that have not been fully addressed. This work is articulated around the premise that rethinking the security design bottom up, starting at the physical layer, is not only viable in 6G but importantly, arises as an efficient way to overcome security hurdles in novel use cases, notably massive machine type communications (mMTC), ultra reliable low latency communications (URLLC) and autonomous cyberphysical systems. Unlike existing review papers that treat physical layer security orthogonally to cryptography, we will try to provide a few insights of underlying connections. Discussing many practical issues, we will present a comprehensive review of the state-of the-art in i) secret key generation from shared randomness, ii) the wiretap channels and fundamental limits, iii) authentication of devices using physical unclonable functions (PUFs), localization and multi-factor authentication, and, iv) jamming attacks at the physical layer. We finally conclude with the proposers' aspirations for the 6G security landscape, in the hyper-connectivity and semantic communications era.
Lightweight session key agreement schemes are expected to play a central role in building Internet of things (IoT) security in sixth-generation (6G) networks. A well-established approach deriving from the physical layer is a secret key generation (SKG) from shared randomness (in the form of wireless fading coefficients). However, although practical, SKG schemes have been shown to be vulnerable to active attacks over the initial “advantage distillation” phase, throughout which estimates of the fading coefficients are obtained at the legitimate users. In fact, by injecting carefully designed signals during this phase, a man-in-the-middle (MiM) attack could manipulate and control part of the reconciled bits and thus render SKG vulnerable to brute force attacks. Alternatively, a denial of service attack can be mounted by a reactive jammer. In this paper, we investigate the impact of injection and jamming attacks during the advantage distillation in a multiple-input–multiple-output (MIMO) system. First, we show that a MiM attack can be mounted as long as the attacker has one extra antenna with respect to the legitimate users, and we propose a pilot randomization scheme that allows the legitimate users to successfully reduce the injection attack to a less harmful jamming attack. Secondly, by taking a game-theoretic approach we evaluate the optimal strategies available to the legitimate users in the presence of reactive jammers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.