Deoxidized oxygen free copper C12200, 1 mm in thickness, was welded to 1-mm thick AISI 304 stainless steel with disk laser. The butt-welded joints were produced with different welding parameters. Full factorial design of experiment (DoE) approach consisting of three factors and two levels was utilized. Laser powers used for welding were 1.3 and 1.9 kW and welding speeds of 20 and 30 mm/s. Two beam offsets were tested, namely, 100 μm toward copper side and 200 μm toward AISI 304 steel. It was found that beam offset possesses the largest influence on the welded joints’ tensile strength. Tensile strengths attained values more than 3.7 times higher in comparison to the AISI 304 steel beam offset. When lower laser power was used, the higher tensile strength was attained for copper sheet offset. Higher microhardness was observed when laser beam was offset to AISI 304 steel side. The average microhardness of the weld metal was higher than that of the weaker base material, copper sheet. Energy dispersive X-ray spectroscopy (EDS) analysis confirmed the heterogeneity in elemental composition across the welded joint interface, being lower when laser beam was offset to AISI 304 steel side. On the other hand, the copper content dropped to the average composition of weld metal at the distance of about 140 μm from copper-weld metal interface.
Drilling of Carbon Fiber-Reinforced Plastic/Titanium alloy (CFRP/Ti) stacks represents one of the most widely used machining methods for making holes to fasten assemblies in civil aircraft. However, poor machinability of CFRP/Ti stacks in combination with the inhomogeneous behavior of CFRP and Ti alloy face manufacturing and scientific community with a problem of defining significant factors and conditions for ensuring hole quality in the CFRP/Ti alloy stacks. Herein, we investigate the effects of drilling parameters on drilling temperature and hole quality in CFRP/Ti alloy stacks by applying an artificial neuron network (ANN). We varied cutting speed, feed rate, and time delay factors according to the factorial design L9 Taguchi orthogonal array and measured the drilling temperature, hole diameter, and out of roundness by using a thermocouple and coordinate measuring machine methods for ANN analysis. The results show that the drilling temperature was sensitive to the effect of stack material layer, cutting speed, and time delay factors. The hole diameter was mainly affected by feed, stack material layer, and time delay, while out of roundness was influenced by the time delay, stack material layer, and cutting speed. Overall, ANN can be used for the identification of the drilling parameters–hole quality relationship.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.