We present an atmospheric pressure ambient air plasma technique developed for technically simple treatment of inner and/or outer surfaces of plastic tubes and other hollow dielectric bodies. It is based on surface dielectric barrier discharge generating visually diffuse plasma layers along the treated dielectric surfaces using water-solution electrodes. The observed visual uniformity and measured plasma rotational and vibrational temperatures of 333 K and 2350 K indicate that the discharge can be readily applied to material surface treatment without significant thermal effect. This is exemplified by the obtained permanent surface hydrophilization of polytetrafluoroethylene tubes related to the replacement of a high fraction (more than 80%) of the surface fluorine determined by X-ray photoelectron spectroscopy. A tentative explanation of the discharge mechanism based on high-speed camera observations and the discharge current and voltage of measurements is outlined.
Electrical current measurements in corona or barrier microdischarges are a challenge as they require both high temporal resolution and a large dynamic range of the current probe used. In this article, we apply a simple self-assembled current probe and compare it to commercial ones. An analysis in the time and frequency domain is carried out. Moreover, an improved methodology is presented, enabling both temporal resolution in sub-nanosecond times and current sensitivity in the order of tens of microamperes. Combining this methodology with a high-tech oscilloscope and self-developed software, a unique statistical analysis of currents in volume barrier discharge driven in atmospheric-pressure air is made for over 80 consecutive periods of a 15 kHz applied voltage. We reveal the presence of repetitive sub-critical current pulses and conclude that these can be identified with the discharging of surface charge microdomains. Moreover, extremely low, long-lasting microsecond currents were detected which are caused by ion flow, and are analysed in detail. The statistical behaviour presented gives deeper insight into the discharge physics of these usually undetectable current signals.
Thispaper reports on the oscillations both on the cathode voltage and on the discharge current which emerged suddenly and simultaneously during ahigh-power impulse magnetron sputtering pulse. Detailedexperiments identified the pressure and the discharge current ranges to detect these oscillations. The oscillationsoriginatedfrom the magnetized plasma and their frequency ranged from 225 kHz to 400 kHz depending on the experimental conditions. Simultaneous measurement of both oscillations and spokes was conducted to find mutual correlations. The oscillations always accompanied the spokes and no particular conditions to detect oscillations in theabsence ofspokes were found. The oscillations were not caused by the rotational motion of the spokes butemerged when acertain threshold amount of spokes was overreached.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.