Inflammatory and antioxidant responses, in male C57Bl6J mice, to single intranasal inoculations with live or heat-killed Streptococcus pneumoniae were studied in order to tease out differences in responses. Heat-killed bacteria elicited weak lung neutrophil infiltration and raised concentrations (peak 6-8 h), in serum or lung tissue, of CXCL1 and 2, tumor necrosis factor alpha (TNFα), interleukin-6 (IL-6), and granulocyte-macrophage-colony stimulating factor, with later increases in CCL2 and IL-1β. Live bacteria induced profound pulmonary neutrophil infiltration and acute chemokine/cytokine elevations. After 72-96 h, live S. pneumoniae induced a delayed rise in chemokines CXCL2 and CCL2, preceded by increases in TNFα, IL-1β, and IL-6 and mononuclear infiltration of lungs. With both live and heat-killed bacteria, alveolar epithelial type II cells and alveolar macrophages were the main sources of TNFα and IL-1β. Only live bacteria caused an acute decrease in lung glutathione peroxidase, an increase in superoxide dismutase, and a sustained increase in serum amyloid protein A. Acute innate immune responses to live and heat-killed S. pneumoniae are similar. In response to live bacteria, inflammation is greater, accompanied by changes in antioxidant enzymes and has an additional, later mononuclear component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.