Noncovalent molecular interactions, such as hydrogen bonding and van der Waals forces, play an important role in self-assembling to supramolecular structures. To study these forces, we chose monolayers at the air/water interface to limit the possible arrangements of the interacting molecules. Furthermore, monolayers provide useful tools to understand and study interactions between molecules in a controlled and fundamental way. The phase behavior and molecular packing of the phenols 1-(4-hydroxyphenyl)-octadecane (5a), 1-(3,4-dihydroxyphenyl)-octadecane (6), and 1-(2,3,4-trihydroxyphenyl)-octadecane (3) and their methyl ethers in monolayers at the air/water interface have been examined by π/A isotherms, Brewster angle microscopy (BAM), grazing incidence X-ray diffraction (GIXD) measurements, and density functional theory (DFT) calculations. The phenols are synthesized by Friedel-Crafts acylation of methoxybenzenes, hydrogenation of the resulting aryl ketones, and cleavage of the aryl methyl ethers. In the π/A isotherms and in BAM, the phenols show patches of the solid condensed phase at large molecular areas and the monolayers collapse at high pressures. Furthermore, the dimensions of the unit cell obtained by GIXD measurements are compatible with an arrangement of the phenyl rings that allows one aryl ring to interact with four adjacent phenyl rings in an edge-to-face arrangement, which leads to a significant binding energy. The experimental data are in good agreement with DFT calculations of 2D crystalline benzene and p-cresol arrangements. The enhanced monolayer stability of phenol 5a can be explained by hydrogen bonds of the hydroxyl group with water and van der Waals forces between the alkyl chains and aryl-aryl interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.