The energy-yielding pathways that provide the large amounts of metabolic energy required by inner ear sensorineural cells are poorly understood. Neuroglobin (Ngb) is a neuron-specific hemoprotein of the globin family, which is suggested to be involved in oxidative energy metabolism. Here we present quantitative real-time reverse transcription PCR, in situ hybridization, immunohistochemical and Western blot evidence that neuroglobin is highly expressed in the mouse and rat cochlea. For primary cochlea neurons, Ngb expression is limited to the subpopulation of type I spiral ganglion cells, those which innervate inner hair cells, while the subpopulation of type II spiral ganglion cells which innervate the outer hair cells do not express Ngb. We further investigated Ngb distribution in rat, mouse and human auditory brainstem centers, and found that the cochlear nuclei and superior olivary complex (SOC) also express considerable amounts of Ngb. Notably, the majority of olivocochlear neurons, those which provide efferent innervation of outer hair cells as identified by neuronal tract tracing, were Ngb-immunoreactive. We also observed that neuroglobin in the SOC frequently co-localized with neuronal nitric oxide synthase, the enzyme responsible for nitric oxide production. Our findings suggest that neuroglobin is well positioned to play an important physiologic role in the oxygen homeostasis of the peripheral and central auditory nervous system, and provides the first evidence that Ngb signal differentiates the central projections of the inner and outer hair cells.
Cytoglobin (Cygb), a hemoprotein of the globin family, is expressed in the supportive tissue cells of the fibroblast lineage and in distinct neuronal cell populations. The expression pattern and regulatory parameters of fibroblasts and related cells were studied in organs such as the kidney and liver in a variety of animal models. In contrast, knowledge about cytoglobin-expressing neurons is sparse. Only a few papers described the distribution in the brain as ubiquitous with a restricted number of neurons in focal regions. Although there is evidence for cytoglobin involvement in neuronal hypoxia tolerance, its presence in the auditory system was not studied despite high metabolism rates and oxygen demands of the cochlea and related brainstem centers. In a continuation of a previous study demonstrating Cygb-neurons in, inter alia, auditory regions of the mouse brain, we concentrated on the superior olivary complex (SOC) in the present study. We sought to investigate the distribution, projection pattern and neurochemistry of Cygb-neurons in the SOC. We conducted immunohistochemistry using a Cygb antibody and found that this brainstem region, functionally competent for bilateral hearing and providing cochlear hair cell innervation, contains a considerable number of Cygb-expressing neurons (averaging 2067 ± 211 making up 10 ±1% percent of total neuron number) in rats, and 514 ± 138 (6 ± 1%) in mice. They were observed in all regions of the SOC. Retrograde neuronal tract tracing with Fluorogold injected into the cochlea demonstrated that 1243 ± 100 (6 ± 1% of total neuron number in rat SOC)) were olivocochlear neurons. Approximately 56% of total Cygb neurons were retrogradely labelled, while the majority of olivocochlear neurons of both lateral and medial systems were Cygb-immunoreactive. We also conducted double immunofluorescence staining for Cygb and neuronal nitric oxide synthase (nNOS), the enzyme responsible for nitric oxide production, and observed that cytoglobin in the SOC frequently co-localized with nNOS. Our findings suggest that cytoglobin plays an important physiologic role in the oxygen homeostasis of the peripheral and central auditory nervous system. Further studies, also including transgenic animal models, are required to shed more light on the function(s) of Cygb in neurons, in particular of the auditory system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.