Abstract-Existing solid state drive (SSD) simulators unfortunately lack hardware and/or software architecture models. Consequently, they are far from capturing the critical features of contemporary SSD devices. More importantly, while the performance of modern systems that adopt SSDs can vary based on their numerous internal design parameters and storage-level configurations, a full system simulation with traditional SSD models often requires unreasonably long runtimes and excessive computational resources. In this work, we propose SimpleSSD 1 , a highfidelity simulator that models all detailed characteristics of hardware and software, while simplifying the nondescript features of storage internals. In contrast to existing SSD simulators, SimpleSSD can easily be integrated into publicly-available full system simulators. In addition, it can accommodate a complete storage stack and evaluate the performance of SSDs along with diverse memory technologies and microarchitectures. Thus, it facilitates simulations that explore the full design space at different levels of system abstraction.
SSDs become a major storage component in modern memory hierarchies, and SSD research demands exploring future simulation-based studies by integrating SSD subsystems into a full-system environment. However, several challenges exist to model SSDs under a full-system simulations; SSDs are composed upon their own complete system and architecture, which employ all necessary hardware, such as CPUs, DRAM and interconnect network. Employing the hardware components, SSDs also require to have multiple device controllers, internal caches and software modules that respect a wide spectrum of storage interfaces and protocols. These SSD hardware and software are all necessary to incarnate storage subsystems under full-system environment, which can operate in parallel with the host system.In this work, we introduce a new SSD simulation framework, SimpleSSD 2.0, namely Amber, that models embedded CPU cores, DRAMs, and various flash technologies (within an SSD), and operate under the full system simulation environment by enabling a data transfer emulation. Amber also includes full firmware stack, including DRAM cache logic, flash firmware, such as FTL and HIL, and obey diverse standard protocols by revising the host DMA engines and system buses of a popular full system simulator's all functional and timing CPU models (gem5). The proposed simulator can capture the details of dynamic performance and power of embedded cores, DRAMs, firmware and flash under the executions of various OS systems and hardware platforms. Using Amber, we characterize several system-level challenges by simulating different types of fullsystems, such as mobile devices and general-purpose computers, and offer comprehensive analyses by comparing passive storage and active storage architectures.
No abstract
Block traces are widely used for system studies, model verifications, and design analyses in both industry and academia. While such traces include detailed block access patterns, existing trace-driven research unfortunately often fails to find truenorth due to a lack of runtime contexts such as user idle periods and system delays, which are fundamentally linked to the characteristics of target storage hardware. In this work, we propose TraceTracker, a novel hardware/software co-evaluation method that allows users to reuse a broad range of the existing block traces by keeping most their execution contexts and user scenarios while adjusting them with new system information. Specifically, our TraceTracker's software evaluation model can infer CPU burst times and user idle periods from old storage traces, whereas its hardware evaluation method remasters the storage traces by interoperating the inferred time information, and updates all inter-arrival times by making them aware of the target storage system. We apply the proposed co-evaluation model to 577 traces, which were collected by servers from different institutions and locations a decade ago, and revive the traces on a high-performance flash-based storage array. The evaluation results reveal that the accuracy of the execution contexts reconstructed by TraceTracker is on average 99% and 96% with regard to the frequency of idle operations and the total idle periods, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.