The density of nanofluids is an important thermophysical property whose value is required to evaluate various heat-transfer parameters such as the Reynolds number, the Nusselt number, pressure loss, and the Darcy friction factor. The determination of these parameters is central to the design of many heat-transfer applications. Notably, the density of nanofluids has received relatively little research attention compared with other thermophysical properties. The present study thus focuses on the development of a support vector regression model to estimate the densities of aluminum nitride, titanium nitride, and silicon nitride nanoparticles dispersed in ethylene glycol solution. As inputs, the proposed model uses the mass fraction, temperature, nanoparticle size, and the molecular weight of the nanoparticles. The proposed model predicts the nanofluid densities with high accuracy, as determined by a correlation coefficient of 99.87% and an absolute average relative deviation of 0.0701. To further highlight the accuracy of the proposed model, we compare its results with those of the model of Pak and Cho. The Pak and Cho results deviate considerably from the experimental data except at 298 K. Overall, the proposed support vector regression model is much more accurate than the Pak and Cho model. We thus conclude that the machine learning approach is more reliable for obtaining rapid estimates of the density of nanofluids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.