Developments in UAV sensors and platforms in recent decades have stimulated an upsurge in its application for 3D mapping. The relatively low-cost nature of UAVs combined with the use of revolutionary photogrammetric algorithms, such as dense image matching, has made it a strong competitor to aerial lidar mapping. However, in the context of 3D city mapping, further 3D modeling is required to generate 3D city models which is often performed manually using, e.g., photogrammetric stereoplotting. The aim of the paper was to try to implement an algorithmic approach to building point cloud segmentation, from which an automated workflow for the generation of roof planes will also be presented. 3D models of buildings are then created using the roofs’ planes as a base, therefore satisfying the requirements for a Level of Detail (LoD) 2 in the CityGML paradigm. Consequently, the paper attempts to create an automated workflow starting from UAV-derived point clouds to LoD 2-compatible 3D model. Results show that the rule-based segmentation approach presented in this paper works well with the additional advantage of instance segmentation and automatic semantic attribute annotation, while the 3D modeling algorithm performs well for low to medium complexity roofs. The proposed workflow can therefore be implemented for simple roofs with a relatively low number of planar surfaces. Furthermore, the automated approach to the 3D modeling process also helps to maintain the geometric requirements of CityGML such as 3D polygon coplanarity vis-à-vis manual stereoplotting.
CityGML merupakan model data yang bersifat terbuka untuk memodelkan wilayah perkotaan maupun lanskap secara 3D. Dari lima tingkat perincian/Levels of Detail (LOD) pada CityGML, LOD2 menjadi tingkat perincian yang penting karena ketersediaan informasi atap bangunan. Informasi ini merupakan syarat dasar data untuk pelaksanaan aplikasi seperti perencanaan detail maupun penataan lingkungan dan bangunan. Peta kota 3D yang dominan dengan bangunan dapat diperoleh dari metode pemetaan udara lidar maupun fotogrametri. Produk yang dihasilkan biasanya mempunyai struktur data dalam format CAD atau 3D-shapefile dan bukan dalam format CityGML. Makalah ini menjelaskan pembangunan program konversi dari 3D-shapefile menjadi peta 3D CityGML LOD2 berbasis bahasa pemrograman Python. Pembuatan program ini didasari argumen bahwa model bangunan CityGML LOD2 membutuhkan waktu yang lama untuk dihasilkan secara manual. Dengan demikian, program konversi ini dibuat untuk mengurangi waktu yang dibutuhkan dalam menulis file CityGML. Selain program untuk menulis data bangunan, dibentuk program lain yang dapat menggabungkan data dari program 3dfier dan 3Dtree sehingga didapatkan model CityGML wilayah lengkap dengan objek bangunan, lanskap, dan pohon individual. Sebagai percobaan program, pemodelan dilakukan pada wilayah ITB Jatinangor. Program yang dihasilkan berhasil membangun model bangunan LOD2 dengan batasan yakni kesalahan geometri yang dimiliki oleh data masukan juga dimiliki pada model hasil dari program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.