The best of both worlds: Graphene/ionic liquid (G–IL) layered films were obtained by direct reduction of graphene oxide in the presence of ionic liquids, followed by reassembly through electrostatic layer‐by‐layer (LbL) adsorption (see picture). The layer spacing of the graphene sheets is regularly expanded upon insertion of ionic liquid molecules (green discs). Selective sensing of aromatic compounds (red spheres) by using the G–IL LbL films was also achieved.
Electrochemical-coupling layer-by-layer (ECC-LbL) assembly is introduced as a novel fabrication methodology for preparing layered thin films. This method allows us to covalently immobilize functional units (e.g., porphyrin, fullerene, and fluorene) into thin films having desired thicknesses and designable sequences for both homo- and heteroassemblies while ensuring efficient layer-to-layer electronic interactions. Films were prepared using a conventional electrochemical setup by a simple and inexpensive process from which various layering sequences can be obtained, and the photovoltaic functions of a prototype p/n heterojunction device were demonstrated.
Linear π-gelators self-assemble into entangled fibers in which the molecules are arranged perpendicular to the fiber long axis. However, orientation of gelator molecules in a direction parallel to the long axes of the one-dimensional (1-D) structures remains challenging. Herein we demonstrate that, at the air-water interface, an oligo(p-phenylenevinylene)-derived π-gelator forms aligned nanorods of 340 ± 120 nm length and 34 ± 5 nm width, in which the gelator molecules are reoriented parallel to the long axis of the rods. The orientation change of the molecules results in distinct excited-state properties upon local photoexcitation, as evidenced by near-field scanning optical microscopy. A detailed understanding of the mechanism by which excitation energy migrates through these 1-D molecular assemblies might help in the design of supramolecular structures with improved charge-transport properties.
Development of materials for efficient photoenergy conversion is a subject of critical importance in current science and technology. Efficient performance requires well-controlled segregation of electron donor and acceptor moieties, which we have achieved using block copolymers of tetraphenylporphinatozinc(II) (donor) and C(60) fullerene (acceptor) using living ring-opening metathesis polymerization (ROMP). The resulting amphiphilic ROMP block copolymers undergo self-assembly into nanostructured phase-segregated 1-dimensional nanowires with an approximately 5.5 nm periodicity zebra-stripe-like morphology simply by drop-casting solutions of the polymers onto a substrate such as mica or highly oriented pyrolytic graphite (HOPG). Thin films of the self-assembled nanophase-segregated copolymers exhibit high charge carrier mobilities (approximately 0.26 cm(2) V(-1) s(-1)) and electrical conductivities (up to 6.4 x 10(-4) cm(2) V(-1) s(-1)) as well as highly repeatable photocurrent switching with rapid ON/OFF responses upon white light irradiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.