Recently, it has been reported that neonicotinoid pesticides (NNs) are transferred from mother to child and are assumed to affect the next generation, but the
behavioral effects of NN exposure at different developmental stages have not been investigated. We exposed mice to no-observed-adverse-effect level (NOAEL)
doses of clothianidin (CLO) during the fetal and lactational period, and then evaluated the neurobehavioral effects in juvenile and adult mice. Significant
increases in anxiety-like behavior and locomotor activity were observed in juveniles and adults, respectively, and neuronal activity and neurogenesis in the
hippocampal dentate gyrus were affected in both stages. These results suggest that fetal and lactational exposure to CLO may inhibit neurogenesis and cause
different behavioral abnormalities at different developmental stages.
Recently, developmental exposure to clothianidin (CLO) has been shown to cause reproductive toxicity in male mice, but the effects in female mice remain to be clarified. Pregnant C57BL/6N mice were given a no-observed-adverse-effect-level (NOAEL) dose of CLO until weaning. We then examined ovaries of 3-or 10-week-old female offspring. In the CLO-administered group, morphological changes, a decrease in the immunoreactivity of the antioxidant enzyme glutathione peroxidase 4 (GPx4), and activation of genes in the steroid hormone biosynthesis pathway were observed in 3-week-old mice, and decreases of GPx4 immunoreactivity, 17OH-progesterone and corticosterone levels were observed in 10-week-old mice, along with high rates of infanticide and severe neglect, providing new evidence that developmental exposure to CLO affects juvenile and adult mice differently.
Neonicotinoid pesticides (NNs) cause behavioral abnormalities in mammals, raising concerns about their effects on neural circuit activity. We herein examined the neurological effects of the NN clothianidin (CLO) by in vivo Ca 2+ imaging using two-photon microscopy. Mice were fed the no-observed-adverse-effect-level (NOAEL) dose of CLO for 2 weeks and their neuronal activity in the primary somatosensory cortex (S1) was observed weekly for 2 weeks. CLO exposure caused a sustained influx of Ca 2+ in neurons in the S1 2/3 layers, indicating hyperactivation of neurons. In addition, microarray gene expression analysis suggested the induction of neuroinflammation and changes in synaptic activity. These results demonstrate that exposure to the NOAEL dose of CLO can overactivate neurons and disrupt neuronal homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.