In order to prevent postoperative adhesion and the related complications, a thermally crosslinked gelatin (TCG) film was developed and the basic biological properties were examined, paying special attention to the relationship between these properties and the extent of crosslinking of the film. The gelatin films crosslinked thermally for five different time periods (0, 1, 3, 8, and 14 hours) were developed and the following tests were performed. Regarding the material characterization of the films, the water content, the water solubility, and the enzymatic degradation for collagenase were found to be closely related to the duration of thermal crosslinking. In an in vitro study conducted to examine the cell growth of fibroblasts cultured on the films, the degree of cell growth, except no crosslinked film, was less than that observed in the control group, thus suggesting that such effects of the films on fibroblast cell growth may be related with their anti-adhesive effects. In in vivo tests, the films crosslinked for longer time periods (3, 8, and 14 hours) were retained for longer after being implanted into the abdominal cavity in rats and showed a significant anti-adhesive effect in the rat cecum adhesion models, indicating that the biodegradability and anti-adhesive effects of the TCG films depend on the duration of thermal crosslinking. In order to develop useful and effective anti-adhesive gelatin film, it is very important to optimize duration of the thermal crosslinking.
To overcome the problems associated with sheet- or film-type anti-adhesive materials, we developed a new type of anti-adhesive material, gelatin flakes. We made two types of gelatin flakes with or without thermal cross-linking, and preliminarily examined their basic properties and the anti-adhesive efficacy using a rodent adhesion model. Both types of the gelatin flakes rapidly turned into gel and tightly attached the injured surfaces, absorbing the moisture and blood, when applied onto the abraded sites of rats. In addition, these flakes could be sprayed into the desired area by compressed air through a device with a long, thin tube, which could be used in laparoscopic surgery. The anti-adhesive effects of both types of gelatin flakes were similar, and both types were significantly superior compared to the non-treated group. Although further investigations are necessary, the gelatin flakes have unique and useful properties and satisfactory anti-adhesive effects, which indicate that they may be applicable in laparoscopic surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.