Studying the quality and health risks of groundwater is of great significance for sustainable water resources utilization, especially in arid and semi-arid areas around the world. The current study is carried out to evaluate the quality and potential health risks of groundwater in the Tongchuan area on the Loess Plateau, northwest China. Water quality index (WQI) and hydrochemical correlation analysis were implemented to understand the status of groundwater quality. Daily average exposure dosages through the oral and dermal contact exposure pathways were taken into consideration to calculate the health risks to the human body. Additionally, graphical approaches such as Piper diagram, Durov diagram and GIS mapping were used to help better understand the results of this study. The WQI approach showed that 77.1% of the samples were of excellent quality. The most significant parameters affecting water quality were NO3−, F−, and Cr6+. The health risk assessment results showed that 27.1% and 54.2% of the samples lead to non-carcinogenic risks through oral intake for adults and children, respectively. In contrast, 12.5% of the groundwater samples would result in carcinogenic risks to the residents. This study showed that the WQI method needs to be supplemented by a health risk evaluation to obtain comprehensive results for groundwater quality protection and management in the Tongchuan area.
Abstract. The objective of this research study was to quantify land use and land cover changes before and after the 2010 flood at District Charsadda, Pakistan. The land use and land cover changes were evaluated with the help of advanced geographic information systems (GIS) and remote sensing techniques (RST). Moreover, some remedial measures were taken to develop land use/land cover of the area to overcome future problems. Land use and land cover changes were measured by using satellite images. Two instances were compared, i.e. pre-flood and post-flood, to analyze the change in land use/land cover of District Charsadda within 5 Km along the Kabul River. Comparative analysis of pre and post-flood imageries shows drastic changes over the water body, built-up area, agriculture land, and bare land during flood instances. The study area is rural and agricultural land is dominant in the area. We evaluated the percentage of different land uses/land covers within our study area, as agricultural land was about 68.5 %, barren land was about 22.5 %, and the water body was 8.8 % before the flood. After inundation, the water body raised to 16.4 %, bare soil increased to 26.30 %, agriculture land degraded up to 57 %, and settlements (villages) along River Kabul were badly damaged and finished by this flood. Approximately, four villages of District Nowshera, six villages of District Peshawar, and twenty-seven villages of Charsadda District were badly damaged during the 2010 flood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.