Demand forecasting is one of the main issues of supply chains. It aimed to optimize stocks, reduce costs, and increase sales, profit, and customer loyalty. For this purpose, historical data can be analyzed to improve demand forecasting by using various methods like machine learning techniques, time series analysis, and deep learning models. In this work, an intelligent demand forecasting system is developed. This improved model is based on the analysis and interpretation of the historical data by using different forecasting methods which include time series analysis techniques, support vector regression algorithm, and deep learning models. To the best of our knowledge, this is the first study to blend the deep learning methodology, support vector regression algorithm, and different time series analysis models by a novel decision integration strategy for demand forecasting approach. The other novelty of this work is the adaptation of boosting ensemble strategy to demand forecasting system by implementing a novel decision integration model. The developed system is applied and tested on real life data obtained from SOK Market in Turkey which operates as a fast-growing company with 6700 stores, 1500 products, and 23 distribution centers. A wide range of comparative and extensive experiments demonstrate that the proposed demand forecasting system exhibits noteworthy results compared to the state-of-art studies. Unlike the state-of-art studies, inclusion of support vector regression, deep learning model, and a novel integration strategy to the proposed forecasting system ensures significant accuracy improvement.
Human activity recognition is a challenging problem with many applications including visual surveillance, human-computer interactions, autonomous driving and entertainment. In this study, we propose a hybrid deep model to understand and interpret videos focusing on human activity recognition. The proposed architecture is constructed combining dense optical flow approach and auxiliary movement information in video datasets using deep learning methodologies. To the best of our knowledge, this is the first study based on a novel combination of 3D-convolutional neural networks (3D-CNNs) fed by optical flow and long short-term memory networks (LSTM) fed by auxiliary information over video frames for the purpose of human activity recognition. The contributions of this paper are sixfold. First, a 3D-CNN, also called multiple frames is employed to determine the motion vectors. With the same purpose, the 3D-CNN is secondly used for dense optical flow, which is the distribution of apparent velocities of movement in captured imagery data in video frames. Third, the LSTM is employed as auxiliary information in video to recognize hand-tracking and objects. Fourth, the support vector machine algorithm is utilized for the task of classification of videos. Fifth, a wide range of comparative experiments are conducted on two newly generated chess datasets, namely the magnetic wall chess board video dataset (MCDS), and standard chess board video dataset (CDS) to demonstrate the contributions of the proposed study. Finally, the experimental results reveal that the proposed hybrid deep model exhibits remarkable performance compared to the state-of-the-art studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.